Zhenghong Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6206690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach. Journal of the American Chemical Society, 2018, 140, 6317-6324.	13.7	338
2	Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability. Science, 2021, 372, 618-622.	12.6	313
3	The role of grain boundaries in perovskite solar cells. Materials Today Energy, 2018, 7, 149-160.	4.7	209
4	Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. Nature Communications, 2021, 12, 973.	12.8	189
5	Surface Ligand Management for Stable FAPbI3 Perovskite Quantum Dot Solar Cells. Joule, 2018, 2, 1866-1878.	24.0	187
6	Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule, 2021, 5, 1587-1601.	24.0	120
7	Lead-Free Dion–Jacobson Tin Halide Perovskites for Photovoltaics. ACS Energy Letters, 2019, 4, 276-277.	17.4	101
8	High-Performance Lead-Free Solar Cells Based on Tin-Halide Perovskite Thin Films Functionalized by a Divalent Organic Cation. ACS Energy Letters, 2020, 5, 2223-2230.	17.4	96
9	Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability. Nature Communications, 2020, 11, 151.	12.8	92
10	Quantum-Dot-Induced Cesium-Rich Surface Imparts Enhanced Stability to Formamidinium Lead Iodide Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 1970-1975.	17.4	82
11	Facile healing of cracks in organic–inorganic halide perovskite thin films. Acta Materialia, 2020, 187, 112-121.	7.9	51
12	High-performance methylammonium-free ideal-band-gap perovskite solar cells. Matter, 2021, 4, 1365-1376.	10.0	51
13	Correlations between Electrochemical Ion Migration and Anomalous Device Behaviors in Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 1003-1014.	17.4	39
14	Effect of Grain Size on the Fracture Behavior of Organic-Inorganic Halide Perovskite Thin Films for Solar Cells. Scripta Materialia, 2020, 185, 47-50.	5.2	32
15	Mechanisms of exceptional grain growth and stability in formamidinium lead triiodide thin films for perovskite solar cells. Acta Materialia, 2020, 193, 10-18.	7.9	27
16	Lead-Free Flexible Perovskite Solar Cells with Interfacial Native Oxide Have >10% Efficiency and Simultaneously Enhanced Stability and Reliability. ACS Energy Letters, 2022, 7, 2256-2264.	17.4	19
17	Arrays of Plasmonic Nanostructures for Absorption Enhancement in Perovskite Thin Films. Nanomaterials, 2020, 10, 1342.	4.1	13
18	Real-Time Investigation of Sn(II) Oxidation in Pb-Free Halide Perovskites by X-ray Absorption and Mössbauer Spectroscopy. ACS Applied Energy Materials, 2021, 4, 4327-4332.	5.1	9

#	Article	IF	CITATIONS
19	Time-resolved vibrational-pump visible-probe spectroscopy for thermal conductivity measurement of metal-halide perovskites. Review of Scientific Instruments, 2022, 93, .	1.3	5
20	Delineation and Passivation of Grainâ€Boundary Channels in Metal Halide Perovskite Thin Films for Solar Cells. Advanced Materials Interfaces, 2022, 9, .	3.7	4
21	Fracture Behavior of Organic-Inorganic Halide Perovskite Thin Films for Solar Cells. , 0, , .		0