Youlong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6206455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainably powering wearable electronics solely by biomechanical energy. Nature Communications, 2016, 7, 12744.	5.8	483
2	Allâ€Plasticâ€Materials Based Selfâ€Charging Power System Composed of Triboelectric Nanogenerators and Supercapacitors. Advanced Functional Materials, 2016, 26, 1070-1076.	7.8	190
3	Capacitance properties of single wall carbon nanotube/polypyrrole composite films. Composites Science and Technology, 2007, 67, 2981-2985.	3.8	185
4	Stretchable and Waterproof Self-Charging Power System for Harvesting Energy from Diverse Deformation and Powering Wearable Electronics. ACS Nano, 2016, 10, 6519-6525.	7.3	182
5	Electrochemical supercapacitor electrode material based on poly(3,4-ethylenedioxythiophene)/polypyrrole composite. Journal of Power Sources, 2007, 163, 1120-1125.	4.0	165
6	Template-free prepared micro/nanostructured polypyrrole with ultrafast charging/discharging rate and long cycle life. Journal of Power Sources, 2011, 196, 2373-2379.	4.0	141
7	The effect of various electrolyte cations on electrochemical performance of polypyrrole/RGO based supercapacitors. Physical Chemistry Chemical Physics, 2015, 17, 28666-28673.	1.3	140
8	Suppression of Jahn–Teller distortion of spinel LiMn2O4 cathode. Journal of Alloys and Compounds, 2009, 479, 310-313.	2.8	139
9	Synthesis and electrochemical characterization of multi-cations doped spinel LiMn2O4 used for lithium ion batteries. Journal of Power Sources, 2012, 199, 214-219.	4.0	135
10	Electrochemical in situ polymerization of reduced graphene oxide/polypyrrole composite with high power density. Journal of Power Sources, 2012, 208, 138-143.	4.0	118
11	Morphology controllable nano-sheet polypyrrole–graphene composites for high-rate supercapacitor. Physical Chemistry Chemical Physics, 2015, 17, 19885-19894.	1.3	100
12	Graphene oxide sheets-induced growth of nanostructured Fe ₃ O ₄ for a high-performance anode material of lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 12938-12946.	5.2	98
13	High electrochemical stability Al-doped spinel LiMn2O4 cathode material for Li-ion batteries. Journal of Energy Storage, 2020, 27, 101036.	3.9	98
14	Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module. Optics Express, 2008, 16, 20809.	1.7	97
15	Porous and high electronic conductivity nitrogen-doped nano-sheet carbon derived from polypyrrole for high-power supercapacitors. Carbon, 2016, 107, 638-645.	5.4	93
16	Low-Cost Al ₂ O ₃ Coating Layer As a Preformed SEI on Natural Graphite Powder To Improve Coulombic Efficiency and High-Rate Cycling Stability of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 6512-6519.	4.0	89
17	Capacitance properties of poly(3,4-ethylenedioxythiophene)/polypyrrole composites. Journal of Power Sources, 2006, 159, 370-373.	4.0	88
18	Selfâ€Powered Electrochemical Synthesis of Polypyrrole from the Pulsed Output of a Triboelectric Nanogenerator as a Sustainable Energy System. Advanced Functional Materials, 2016, 26, 3542-3548.	7.8	87

#	Article	IF	CITATIONS
19	Electrochemical properties of tetravalent Ti-doped spinel LiMn2O4. Journal of Solid State Electrochemistry, 2011, 15, 1263-1269.	1.2	80
20	High capacity-favorable tap density cathode material based on three-dimensional carbonous framework supported Na3V2(PO4)2F3 nanoparticles. Chemical Engineering Journal, 2018, 331, 712-719.	6.6	78
21	Facile synthesis of MnO2 grown on nitrogen-doped carbon nanotubes for asymmetric supercapacitors with enhanced electrochemical performance. Journal of Power Sources, 2018, 393, 135-144.	4.0	78
22	Study of the photoconductive ZnO UV detector based on the electrically floated nanowire array. Sensors and Actuators A: Physical, 2012, 181, 6-12.	2.0	77
23	Facile strategy of hollow polyaniline nanotubes supported on Ti3C2-MXene nanosheets for High-performance symmetric supercapacitors. Journal of Colloid and Interface Science, 2020, 580, 601-613.	5.0	76
24	Electrochemically exfoliated high-yield graphene in ambient temperature molten salts and its application for flexible solid-state supercapacitors. Carbon, 2018, 127, 392-403.	5.4	75
25	High charge/discharge rate polypyrrole films prepared by pulse current polymerization. Synthetic Metals, 2010, 160, 1826-1831.	2.1	72
26	Synthesis, characterization and electrochemical behavior of polypyrrole/carbon nanotube composites using organometallic-functionalized carbon nanotubes. Applied Surface Science, 2010, 256, 2284-2288.	3.1	69
27	Effect of Al substitution on the enhanced electrochemical performance and strong structure stability of Na3V2(PO4)3/C composite cathode for sodium-ion batteries. Journal of Power Sources, 2018, 375, 82-92.	4.0	67
28	Microwave-Assisted Synthesis of SnO ₂ @polypyrrole Nanotubes and Their Pyrolyzed Composite as Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 15598-15606.	4.0	65
29	Polyaniline with high crystallinity degree: Synthesis, structure, and electrochemical properties. Journal of Applied Polymer Science, 2014, 131, .	1.3	63
30	Simultaneous Electrochemical Dualâ€Electrode Exfoliation of Graphite toward Scalable Production of Highâ€Quality Graphene. Advanced Functional Materials, 2019, 29, 1902171.	7.8	63
31	High performance LiV0.96Mn0.04PO4F/C cathodes for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 2501.	5.2	62
32	Improving the fast discharge performance of high-voltage LiNi 0.5 Mn 1.5 O 4 spinel by Cu 2+ , Al 3+ , Ti 4+ tri-doping. Journal of Alloys and Compounds, 2016, 677, 18-26.	2.8	62
33	Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries. Journal of Power Sources, 2018, 378, 423-432.	4.0	62
34	F-doping and V-defect synergetic effects on Na3V2(PO4)3/C composite: A promising cathode with high ionic conductivity for sodium ion batteries. Journal of Power Sources, 2018, 397, 307-317.	4.0	60
35	Fluorophosphates from Solid tate Synthesis and Electrochemical Ion Exchange: NaVPO ₄ F or Na ₃ V ₂ (PO ₄) ₂ F ₃ ?. Advanced Energy Materials, 2018, 8, 1801064.	10.2	57
36	Toward a high specific power and high stability polypyrrole supercapacitors. Synthetic Metals, 2011, 161, 1141-1144.	2.1	55

Youlong Xu

#	Article	IF	CITATIONS
37	Enhanced ionic conductivity of an F ^{â^'} -assisted Na ₃ Zr ₂ Si ₂ PO ₁₂ solid electrolyte for solid-state sodium batteries. Journal of Materials Chemistry A, 2020, 8, 12594-12602.	5.2	52
38	Garnet Si–Li7La3Zr2O12 electrolyte with a durable, low resistance interface layer for all-solid-state lithium metal batteries. Journal of Power Sources, 2020, 453, 227881.	4.0	52
39	Unique rhombus-like precursor for synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity. Chemical Engineering Journal, 2018, 345, 483-491.	6.6	51
40	Sodium substitution for partial lithium to significantly enhance theÂcycling stability of Li 2 MnO 3 cathode material. Journal of Power Sources, 2013, 243, 78-87.	4.0	50
41	Ionic conduction, colossal permittivity and dielectric relaxation behavior of solid electrolyte Li3La2/3-TiO3 ceramics. Journal of the European Ceramic Society, 2018, 38, 4483-4487.	2.8	50
42	Excellent stability of spinel LiMn2O4-based composites for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 24563.	6.7	48
43	The composite rods of MnO and multi-walled carbon nanotubes as anode materials for lithium ion batteries. Journal of Power Sources, 2013, 244, 690-694.	4.0	47
44	The composite sphere of manganese oxide and carbon nanotubes as a prospective anode material for lithium-ion batteries. Journal of Power Sources, 2014, 255, 163-169.	4.0	44
45	Towards low-cost, high energy density Li ₂ MnO ₃ cathode materials. Journal of Materials Chemistry A, 2015, 3, 670-679.	5.2	44
46	Nitrogen-doped graphene assists Fe2O3 in enhancing electrochemical performance. Journal of Power Sources, 2016, 326, 389-396.	4.0	42
47	Unraveling the mechanism of optimal concentration for Fe substitution in Na3V2(PO4)2F3/C for Sodium-Ion batteries. Energy Storage Materials, 2021, 37, 325-335.	9.5	42
48	LiF assisted synthesis of LiTi 2 (PO 4) 3 solid electrolyte with enhanced ionic conductivity. Solid State Ionics, 2017, 309, 22-26.	1.3	41
49	Bouquet-Like Mn ₂ SnO ₄ Nanocomposite Engineered with Graphene Sheets as an Advanced Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2018, 10, 17963-17972.	4.0	40
50	Porous membrane host-derived in-situ polymer electrolytes with double-stabilized electrode interface enable long cycling lithium metal batteries. Chemical Engineering Journal, 2022, 433, 134471.	6.6	40
51	Gravity-assisted synthesis of micro/nano-structured polypyrrole for supercapacitors. Chemical Engineering Journal, 2017, 330, 1060-1067.	6.6	37
52	Novel method to enhance the cycling performance of spinel LiMn2O4. Electrochemistry Communications, 2007, 9, 2023-2026.	2.3	35
53	lonic and electronic conductivity of solid electrolyte Li0.5La0.5TiO3 doped with LiO2-SiO2-B2O3 glass. Journal of Alloys and Compounds, 2018, 739, 892-896.	2.8	35
54	Double roles of aluminium ion on surface-modified spinel LiMn1.97Ti0.03O4. Journal of Materials Chemistry, 2011, 21, 4937.	6.7	34

Youlong Xu

#	Article	IF	CITATIONS
55	Effect of electropolymerization time on the performance of poly(3,4-ethylenedioxythiophene) counter electrode for dye-sensitized solar cells. Applied Surface Science, 2014, 289, 145-149.	3.1	34
56	Spinel LiMn2O4 active material with high capacity retention. Applied Surface Science, 2007, 253, 8592-8596.	3.1	33
57	Formation of Al2O3–BaTiO3 composite thin film to increase the specific capacitance of aluminum electrolytic capacitor. Thin Solid Films, 2008, 516, 8436-8440.	0.8	33
58	ZnO nanorod arrays grown on g-C ₃ N ₄ micro-sheets for enhanced visible light photocatalytic H ₂ evolution. RSC Advances, 2019, 9, 24483-24488.	1.7	32
59	Enhanced electrochemical properties of F-doped Li2MnSiO4/C for lithium ion batteries. Journal of Power Sources, 2018, 378, 345-352.	4.0	31
60	Polymer-derived carbon nanofiber network supported SnO2 nanocrystals: a superior lithium secondary battery material. Journal of Materials Chemistry, 2011, 21, 19302.	6.7	30
61	Effect of Doping Ions on Electrochemical Capacitance Properties of Polypyrrole Films. Acta Physico-chimica Sinica, 2007, 23, 299-304.	0.6	29
62	High performance Li 2 MnO 3 /rGO composite cathode for lithium ion batteries. Journal of Power Sources, 2017, 349, 11-17.	4.0	29
63	Electrochemical capacitance of the composite of poly (3,4-ethylenedioxythiophene) and functionalized single-walled carbon nanotubes. Journal of Solid State Electrochemistry, 2008, 12, 947-952.	1.2	28
64	Electropolymerized composite film of polypyrrole and functionalized multi-walled carbon nanotubes: effect of functionalization time on capacitive performance. Journal of Solid State Electrochemistry, 2012, 16, 1781-1789.	1.2	28
65	Titanium doped LiVPO4F cathode for lithium ion batteries. Solid State Ionics, 2014, 268, 236-241.	1.3	27
66	Magnesium substitution to improve the electrochemical performance of layered Li2MnO3 positive-electrode material. Journal of Power Sources, 2016, 330, 37-44.	4.0	27
67	One-step Preparation of Nanoarchitectured TiO2 on Porous Al as Integrated Anode for High-performance Lithium-ion Batteries. Scientific Reports, 2016, 6, 20138.	1.6	27
68	Enhanced cycling performance of spinel LiMn2O4 coated with ZnMn2O4 shell. Journal of Solid State Electrochemistry, 2008, 12, 851-855.	1.2	26
69	Electrochemical co-deposition and characterization of MnO2/SWNT composite for supercapacitor application. Journal of Materials Science: Materials in Electronics, 2013, 24, 1913-1920.	1.1	26
70	Electrochemically active MnO2 coated Li1.2Ni0.18Co0.04Mn0.58O2 cathode with highly improved initial coulombic efficiency. Applied Surface Science, 2016, 384, 125-134.	3.1	26
71	Study on Capacitance Evolving Mechanism of Polypyrrole during Prolonged Cycling. Journal of Physical Chemistry B, 2014, 118, 1353-1362.	1.2	25
72	Towards a high-rate and long-life LiVPO4F/C cathode material for lithium ion batteries by potassium and zirconium co-doping. Journal of Power Sources, 2018, 401, 142-148.	4.0	25

#	Article	IF	CITATIONS
73	Nitrogen-doped hierarchically porous carbonaceous nanotubes for lithium ion batteries. Chemical Engineering Journal, 2018, 352, 964-971.	6.6	25
74	Al2O3–(Ba0.5Sr0.5)TiO3 composite oxide films on etched aluminum foil by sol–gel coating and anodizing. Ceramics International, 2004, 30, 1741-1743.	2.3	24
75	Novel approach to preparation of LiMn2O4 core/LiNixMn2â^'xO4 shell composite. Applied Surface Science, 2009, 255, 5651-5655.	3.1	24
76	Lanthanum and cerium Co-doped LiFePO4: Morphology, electrochemical performance and kinetic study fromÂâ^'30 -Â+50°C. Electrochimica Acta, 2019, 322, 134686.	2.6	24
77	Polypyrrole Films Electrochemically Doped with Dodecylbenzenesulfonate for Copper Protection. Journal of the Electrochemical Society, 2007, 154, C445.	1.3	23
78	Interface Effect on the Electropolymerized Polypyrrole Films with Hollow Micro/Nanohorn Arrays. ACS Applied Materials & Interfaces, 2014, 6, 4693-4704.	4.0	23
79	Enhanced electrochemical performance of polypyrrole depending on morphology and structure optimization by reduced graphene oxide as support frameworks. Electrochimica Acta, 2018, 265, 47-55.	2.6	23
80	Surface Modification of Al Foils for Aluminum Electrolytic Capacitor. Advanced Functional Materials, 2017, 27, 1606042.	7.8	22
81	Enhanced redox kinetics of polysulfides by nano-rod FeOOH for ultrastable lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 19544-19554.	5.2	22
82	Synthesis and Characterization of Bismuth Titanate by an Aqueous Sol?Gel Method. Journal of the American Ceramic Society, 2007, 90, 1382-1385.	1.9	21
83	Performance improvement of ZnO nanowire based surface acoustic wave ultraviolet detector via poly(3,4-ethylenedioxythiophene) surface coating. Sensors and Actuators A: Physical, 2013, 199, 149-155.	2.0	21
84	Mg ²⁺ /F ^{â^`} Synergy to Enhance the Ionic Conductivity of Na ₃ Zr ₂ Si ₂ PO ₁₂ Solid Electrolyte for Solid‣tate Sodium Batteries. ChemElectroChem, 2020, 7, 2087-2094.	1.7	21
85	Electrochemical performance of LiFePO4/graphene composites at low temperature affected by preparation technology. Electrochimica Acta, 2021, 368, 137575.	2.6	21
86	Formation of Al2O3–Bi4Ti3O12 nanocomposite oxide films on low-voltage etched aluminum foil by sol–gel processing. Surface and Coatings Technology, 2008, 202, 1923-1927.	2.2	20
87	Li2MnO3 stabilized LiNi1/3Co1/3Mn1/3O2 cathode with improved performance for lithium ion batteries. Applied Surface Science, 2013, 285, 235-240.	3.1	20
88	The multiple effects of potassium doping on LiVPO4F/C composite cathode material for lithium ion batteries. Journal of Power Sources, 2018, 396, 155-163.	4.0	20
89	Mg-doped Li1.133Ni0.2Co0.2Mn0.467O2 in Li site as high-performance cathode material for Li-ion batteries. Solid State Ionics, 2019, 336, 87-94.	1.3	20
90	Dielectric properties and I-V characteristics of Li0.5La0.5TiO3 solid electrolyte for ceramic supercapacitors. Ceramics International, 2019, 45, 8243-8247.	2.3	19

#	Article	IF	CITATIONS
91	Preinserted Li metal porous carbon nanotubes with high Coulombic efficiency for lithium-ion battery anodes. Chemical Engineering Journal, 2019, 373, 78-85.	6.6	19
92	Study of TiO ₂ -Coated α-Fe ₂ O ₃ Composites and the Oxygen-Defects Effect on the Application as the Anode Materials of High-Performance Li-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 11666-11673.	2.5	19
93	Lowâ€Temperature Synthesis of Bismuth Titanate by an Aqueous Sol–Gel Method. Journal of the American Ceramic Society, 2008, 91, 2079-2082.	1.9	18
94	Off-stoichiometric Na3V2-x(PO4)3/C cathode composites with stable lifetime for sodium ion batteries. Ceramics International, 2018, 44, 13055-13064.	2.3	18
95	Regulating cations and solvents of the electrolyte for ultra-efficient electrochemical production of high-quality graphene. Carbon, 2021, 176, 157-167.	5.4	18
96	Capacitive characteristics of nanocomposites of conducting polypyrrole and functionalized carbon nanotubes: effects of in situ dopant and film thickness. Journal of Solid State Electrochemistry, 2010, 14, 1565-1575.	1.2	17
97	Formation of Al2O3–BaTiO3 nanocomposite oxide films on etched aluminum foil by sol–gel coating and anodizing. Journal of Sol-Gel Science and Technology, 2008, 45, 57-61.	1.1	16
98	Improved electrochemical performances of li- and Mn-Rich layered oxides 0.4Li4/3Mn2/3O2·0.6LiNi1/3Co1/3Mn1/3O2 cathode material by Co3O4 coating. Solid State Ionics, 2017, 310, 62-70.	1.3	16
99	Self-assembled reduced graphene oxide films with different thicknesses as high performance supercapacitor electrodes. Journal of Energy Storage, 2020, 32, 101795.	3.9	16
100	Enhanced capacitance performance of Al2O3–TiO2 composite thin film via sol–gel using double chelators. Journal of Colloid and Interface Science, 2015, 443, 170-176.	5.0	15
101	A new high-voltage plateau of Na3V2(PO4)3 for sodium ion batteries: A promising cathode with high energy density. Ceramics International, 2021, 47, 26579-26583.	2.3	15
102	In situ fabrication of Ni(OH)2 nanofibers on polypyrrole-based carbon nanotubes for high-capacitance supercapacitors. Materials Research Bulletin, 2013, 48, 1342-1345.	2.7	14
103	High-capacity phase formation by surface modification of Li3PO4 on nanosized Li2RuO3 electrode for lithium batteries. Journal of Power Sources, 2012, 208, 447-451.	4.0	13
104	Double Donors Tuning Conductivity of LiVPO ₄ F for Advanced Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 38849-38858.	4.0	13
105	Biomimetic Synthesis of Earâ€ofâ€wheatâ€shaped Manganese Oxide Nanoparticles on Carbon Nanotubes for Highâ€capacity Lithium Storage. Energy and Environmental Materials, 2021, 4, 399-406.	7.3	13
106	Elevated Energy Density and Cyclic Stability of LiVPO ₄ F Cathode Material for High-rate Lithium Ion Batteries. ACS Applied Energy Materials, 2020, 3, 3553-3561.	2.5	13
107	Rational design of hierarchical FeCo2O4 nanosheets@NiO nanowhiskers core-shell heterostructure as binder-free electrodes for efficient pseudocapacitors. Electrochimica Acta, 2021, 370, 137789.	2.6	13
108	Corrosion behavior of different tantalum crystal faces in NH4Br–ethanol solution and DFT calculation. Applied Surface Science, 2013, 280, 247-255.	3.1	12

#	Article	IF	CITATIONS
109	The electrochemical performance of sodium-ion-modified spinel LiMn2O4 used for lithium-ion batteries. Journal of Solid State Electrochemistry, 2014, 18, 713-719.	1.2	12
110	Flocculant-assisted synthesis of Fe2O3/carbon composites for superior lithium rechargeable batteries. Materials Research Bulletin, 2012, 47, 152-155.	2.7	11
111	Al2O3 coated Mn3O4@C composite for LIBs anode with enhanced cycling stability and rate performance. Solid State Ionics, 2018, 320, 226-232.	1.3	11
112	Synthesis of carbon coated Li2MnO3 cathode material with enhanced rate capability for lithium-ion batteries. Solid State Ionics, 2018, 325, 170-175.	1.3	11
113	Simple and Rapid Spectrophotometric Determination of Titanium on Etched Aluminum Foils. American Journal of Analytical Chemistry, 2014, 05, 149-156.	0.3	11
114	IMPROVING THE BATTERY PERFORMANCE OF LiVPO ₄ F BY CHROMIUM DOPING. Functional Materials Letters, 2013, 06, 1350053.	0.7	10
115	Fluorinion transfer in silver-assisted chemical etching for silicon nanowires arrays. Applied Surface Science, 2015, 347, 421-427.	3.1	10
116	Hydrothermal-assisted solid-state reaction synthesis of high ionic conductivity Li1+xAlxTi2â^'x(PO4)3 ceramic solid electrolytes: The effect of Al3+ doping content. Solid State Ionics, 2019, 343, 115078.	1.3	10
117	Efficient Anion Fluoride-Doping Strategy to Enhance the Performance in Garnet-Type Solid Electrolyte Li ₇ La ₃ Zr ₂ O ₁₂ . ACS Applied Materials & Interfaces, 2022, 14, 2939-2948.	4.0	10
118	Superior lithium storage of the carbon modified hybrid of manganese monoxide and carbon nanotubes. Materials Letters, 2013, 113, 186-189.	1.3	9
119	Alumina-coated and manganese monoxide embedded 3D carbon derived from avocado as high-performance anode for lithium-ion batteries. Applied Surface Science, 2018, 445, 359-367.	3.1	9
120	The effect of oxygen-containing species on corrosion behavior of Ta (1 1 0) surface: A DFT study with an experimental verification. Applied Surface Science, 2022, 586, 152810.	3.1	9
121	Novel Mn-based Li-rich layered oxide 0.3Li2MnO3·0.7LiNi1/3Co1/3Mn1/3O2 as anode material for lithium-ion batteries. Materials Letters, 2018, 210, 223-226.	1.3	8
122	High-performance symmetric lithium-ion batteries constructed with a new bi-functional electrode Li- and Mn-rich layered oxide 0.3Li2MnO3·0.7LiNi1/3Co1/3Mn1/3O2. Electrochimica Acta, 2019, 325, 134932.	2.6	8
123	Dual-site magnesium doping in Li2MnSiO4/C/rGO cathode material for lithium-ion batteries. Solid State Ionics, 2019, 338, 39-46.	1.3	8
124	Allâ€Inâ€One Stainlessâ€&teel Mesh Oxide Composites Anode for Flexible Liâ€Ion Battery. Advanced Materials Technologies, 2020, 5, 2000376.	3.0	8
125	Enhanced critical current density of Garnet Li7La3Zr2O12 solid electrolyte by incorporation of LiBr. Electrochimica Acta, 2022, 409, 139986.	2.6	8
126	Synthesis and Third-Order Optical Nonlinearities of Conjugated Polymer-Bonded Carbon Nanotubes. Japanese Journal of Applied Physics, 2005, 44, 3022-3027.	0.8	7

#	Article	IF	CITATIONS
127	A pHâ€Tailored Anodic Deposition of Hydrous RuO 2 for Supercapacitors. ChemistrySelect, 2019, 4, 8122-8128.	0.7	7
128	Unveiling dual-site substitution in stabilizing LiVPO4F cathode paired with Li metal anode for durable lithium ion batteries. Electrochimica Acta, 2020, 349, 136374.	2.6	7
129	Preparation and Electrical Properties of an Anodized Al ₂ O ₃ –BaTiO ₃ Composite Film. Journal of the American Ceramic Society, 2008, 91, 2360-2363.	1.9	6
130	Fe excess in hydrothermally synthesized LiFePO4. Materials Letters, 2012, 84, 139-142.	1.3	6
131	The effect of K-Ion on the electrochemical performance of spinel LiMn2O4. Electronic Materials Letters, 2015, 11, 138-142.	1.0	6
132	MnO@Al2O3 with high cycle performance via depressing solution of Mn for lithium-ion batteries anode. Applied Surface Science, 2018, 457, 831-837.	3.1	6
133	Insights into the enhanced electrochemical performance of Mn-deficiency Li2Mn(1-x)SiO4/C for Li-ion batteries: Experimental and theoretical study. Journal of Power Sources, 2019, 420, 46-53.	4.0	6
134	Suppressing Fe–Li, Ni–Li Antisite Defects in LiFePO ₄ and LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ by Optimized Synthesis Methods. ACS Applied Energy Materials, 2020, 3, 5893-5901.	2.5	6
135	Improved Electrochemical Stability of Zn-Doped LiNi _{1/3} Co _{1/3} Mn _{1/3} O _{2Cathode Materials. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 1899-1905.}	gt2	6
136	Structural stabilities and uniaxial strain modulated electronic properties of AlN/SiC-core–shell nanowires: A first-principles study. Superlattices and Microstructures, 2013, 57, 19-26.	1.4	5
137	Synthesis and characterization of TiO2/C by a simple thermal decomposition method. Solid State lonics, 2014, 268, 265-267.	1.3	5
138	Hydrous ruthenium oxide prepared by steam-assisted thermolysis: Capacitance and stability. Solid State lonics, 2014, 268, 312-315.	1.3	5
139	Preparation and Application of Nanorod FeOOH/CNT@S Composites for High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 8368-8376.	2.5	5
140	Nb, F-codoped TiO2 hollow spheres with high visible light photocatalytic activity. Nanoscale Research Letters, 2013, 8, 508.	3.1	4
141	Multi-cations doped LiVPO ₄ F cathode for lithium-ion batteries. Functional Materials Letters, 2015, 08, 1550060.	0.7	4
142	Simple thermal decomposition method to synthesize LiTi2(PO4)3/C core–shell composite for lithium ion batteries. Journal of Solid State Electrochemistry, 2016, 20, 1889-1894.	1.2	4
143	Optimizing the Hydrothermal Synthesis of Micro-Sized Olivine LiFePO ₄ . Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 2885-2892.	2.2	4
144	Improved Li-storage performance of Mg2+-doped LiVPO4F@C cathode material synthesized by a fast carbothermal reduction reaction. Materials Research Bulletin, 2022, 147, 111635.	2.7	4

#	Article	IF	CITATIONS
145	A Novel Method to Improve Cycling Performance of LiMn2O4 Cathodes. ECS Transactions, 2006, 1, 59-67.	0.3	3
146	Synthesis and characterization of Nb, F-codoped titania nanoparticles for dye-sensitized solar cells. Journal of Materials Research, 2014, 29, 230-238.	1.2	3
147	TiO ₂ Nanotubes as an Anode Material for Lithium Ion Batteries. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31, 1437-1451.	2.2	3
148	Triple-Cation-Doped Li ₃ V ₂ (PO ₄) ₃ Cathode Material for Lithium Ion Batteries. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31, 1513-1520.	2.2	3
149	Capacitive characteristics of nanocomposites of conducting polypyrrole and functionalized carbon nanotubes: pulse current synthesis and tailoring. Journal of Solid State Electrochemistry, 2016, 20, 1413-1420.	1.2	3
150	HeterostructureZnO-MnOnetwork with graphene for improved lithium ions storage anode. Journal of Alloys and Compounds, 2019, 802, 591-599.	2.8	3
151	Facile synthesis of foamed-nickel supporting MnO2 as binder-less electrodes for high electrochemical performance supercapacitors. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	3
152	Synthesis and Performance of Nano MnO as an Anode Material for Lithium-Ion Batteries. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2013, 29, 293-297.	2.2	3
153	Synthesis and Electrochemical Characterization of Ge ⁴⁺ , Sn ⁴⁺ Doped Spinel LiMn ₂ O ₄ . Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2013, 29, 763-769.	2.2	3
154	First-principles study on the structural stability and electronic properties of AlN/GaN heterostructure nanoribbons. Superlattices and Microstructures, 2013, 57, 37-43.	1.4	2
155	Electropolymerization and Characterization of Fast Charge-Discharge PPy/F-SWNTs Composite Materials. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 373-380.	2.2	2
156	Preparation of LiMn2O4 Cathode with Excellent Cycling Performance. ECS Transactions, 2006, 2, 1-9.	0.3	1
157	Thin aluminum film improving the cycle performance of positive electrode of lithium ion battery. Applied Surface Science, 2007, 253, 8453-8457.	3.1	1
158	Nonlinear Optical Properties of Poly(3,4-ethylenedioxythiophene) Synthesized by Electropolymerization. Japanese Journal of Applied Physics, 2009, 48, 04C123.	0.8	1
159	The effect of Na0.44MnO2 formation in Na+-modified spinel LiMn2O4. Electronic Materials Letters, 2014, 10, 787-790.	1.0	1
160	Doping-Coating Surface Modification of Spinel LiMn ₂ O ₄ Cathode Material with Al ³⁺ for Lithium-Ion Batteries. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 1177-1182.	2.2	1
161	Performance degradation of Li\$_{x}\$FePO\$_{4}\$ (x = 0, 1) induced by postannealing. Turkish Journal of Chemistry, 2014, 38, 837-849.	0.5	0
162	Towards ultrafine TiO2 nanocrystal at room temperature. Journal of Sol-Gel Science and Technology, 2014, 72, 310-313.	1.1	0

#	Article	IF	CITATIONS
163	Electrochemically Prepared Poly(3,4â€ethylenedioxy―thiophene)/Polypyrrole Films with Hollow Microâ€/Nanohorn Arrays as Highâ€Efficiency Counter Electrodes for Dyeâ€6ensitized Solar Cells. ChemElectroChem, 2016, 3, 1376-1383.	1.7	0