Daniel M Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6206443/publications.pdf

Version: 2024-02-01

304743 580821 7,824 25 22 25 h-index citations g-index papers 33 33 33 12148 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Control of Stem Cell Fate by Physical Interactions with the Extracellular Matrix. Cell Stem Cell, 2009, 5, 17-26.	11.1	1,669
2	Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nature Materials, 2012, 11, 768-774.	27.5	1,661
3	Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nature Materials, 2013, 12, 458-465.	27.5	982
4	Mechanical tugging force regulates the size of cell–cell junctions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9944-9949.	7.1	633
5	Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nature Methods, 2010, 7, 969-971.	19.0	534
6	Structural basis for vinculin activation at sites of cell adhesion. Nature, 2004, 430, 583-586.	27.8	356
7	Fluid shear stress threshold regulates angiogenic sprouting. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7968-7973.	7.1	329
8	Cytoskeleton-based forecasting of stem cell lineage fates. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 610-615.	7.1	258
9	Bone Morphogenetic Protein-2-Induced Signaling and Osteogenesis Is Regulated by Cell Shape, RhoA/ROCK, and Cytoskeletal Tension. Stem Cells and Development, 2012, 21, 1176-1186.	2.1	211
10	IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies. Nature Medicine, 2020, 26, 1096-1101.	30.7	193
11	Spatial distribution and functional significance of activated vinculin in living cells. Journal of Cell Biology, 2005, 169, 459-470.	5.2	156
12	Two Distinct Head-Tail Interfaces Cooperate to Suppress Activation of Vinculin by Talin. Journal of Biological Chemistry, 2005, 280, 17109-17117.	3.4	149
13	A Conformational Switch in Vinculin Drives Formation and Dynamics of a Talin-Vinculin Complex at Focal Adhesions*. Journal of Biological Chemistry, 2006, 281, 16006-16015.	3.4	145
14	Buried Charged Surface in Proteins. Structure, 2000, 8, 1203-1214.	3.3	110
15	Tribbles-1 regulates hepatic lipogenesis through posttranscriptional regulation of C/EBPα. Journal of Clinical Investigation, 2015, 125, 3809-3818.	8.2	84
16	Activation of beta 1 but not beta 3 integrin increases cell traction forces. FEBS Letters, 2013, 587, 763-769.	2.8	71
17	Control of Surface Chemistry, Substrate Stiffness, and Cell Function in a Novel Terpolymer Methacrylate Library. Langmuir, 2011, 27, 1891-1899.	3.5	46
18	ATF4 licenses C/EBP \hat{I}^2 activity in human mesenchymal stem cells primed for adipogenesis. ELife, 2015, 4, e06821.	6.0	45

#	Article	IF	CITATION
19	miR-125b Is an Adhesion-Regulated microRNA that Protects Mesenchymal Stem Cells from Anoikis. Stem Cells, 2012, 30, 956-964.	3.2	42
20	Repressor transcription factor 7-like 1 promotes adipogenic competency in precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16271-16276.	7.1	38
21	Nuclear Receptor Function through Genomics: Lessons from the Glucocorticoid Receptor. Trends in Endocrinology and Metabolism, 2017, 28, 531-540.	7.1	37
22	Acute slowing of cardiac conduction in response to myofibroblast coupling to cardiomyocytes through N-cadherin. Journal of Molecular and Cellular Cardiology, 2014, 68, 29-37.	1.9	35
23	Loss of chromosome arms 3p and 9p and inactivation of P16INK4a in normal epithelium of patients with primary lung cancer. Genes Chromosomes and Cancer, 2001, 32, 119-125.	2.8	18
24	Shared nucleotide flanks confer transcriptional competency to bZip core motifs. Nucleic Acids Research, 2018, 46, 8371-8384.	14.5	14
25	Measuring Cell–Cell Tugging Forces Using Bowtie-Patterned mPADs (Microarray Post Detectors). Methods in Molecular Biology, 2013, 1066, 157-168.	0.9	8