
Vito Calderone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6206424/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The crystal structure of yeast copper thionein: The solution of a long-lasting enigma. Proceedings of the United States of America, 2005, 102, 51-56.	3.3	146
2	Crystal Structure of the OXA-48 β-Lactamase Reveals Mechanistic Diversity among Class D Carbapenemases. Chemistry and Biology, 2009, 16, 540-547.	6.2	144
3	Conformational variability of matrix metalloproteinases: Beyond a single 3D structure. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5334-5339.	3.3	143
4	Structural and dynamic aspects related to oligomerization of apo SOD1 and its mutants. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6980-6985.	3.3	109
5	Structural Investigation of Cisplatin–Protein Interactions: Selective Platination of His19 in a Cuprozinc Superoxide Dismutase. Angewandte Chemie - International Edition, 2006, 45, 1267-1269.	7.2	107
6	A hint for the function of human Sco1 from different structures. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8595-8600.	3.3	99
7	Snapshots of the Reaction Mechanism of Matrix Metalloproteinases. Angewandte Chemie - International Edition, 2006, 45, 7952-7955.	7.2	98
8	Molecular recognition and substrate mimicry drive the electron-transfer process between MIA40 and ALR. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4811-4816.	3.3	92
9	Identification, retinoid binding, and x-ray analysis of a human retinol-binding protein. Proceedings of the United States of America, 2001, 98, 3710-3715.	3.3	88
10	Copper(I)-mediated protein–protein interactions result from suboptimal interaction surfaces. Biochemical Journal, 2009, 422, 37-42.	1.7	85
11	Evidence of Reciprocal Reorientation of the Catalytic and Hemopexin-Like Domains of Full-Length MMP-12. Journal of the American Chemical Society, 2008, 130, 7011-7021.	6.6	84
12	Ligand Binding and Structural Analysis of a Human Putative Cellular Retinol-binding Protein. Journal of Biological Chemistry, 2002, 277, 41970-41977.	1.6	80
13	Crystal Structure of Amine Oxidase from Bovine Serum. Journal of Molecular Biology, 2005, 346, 991-1004.	2.0	79
14	Crystal structure of the PsbQ protein of photosystem II from higher plants. EMBO Reports, 2003, 4, 900-905.	2.0	78
15	Exploring the Subtleties of Drugâ^Receptor Interactions:Â The Case of Matrix Metalloproteinases. Journal of the American Chemical Society, 2007, 129, 2466-2475.	6.6	72
16	Entropic Contribution to the Linking Coefficient in Fragment Based Drug Design: A Case Study. Journal of Medicinal Chemistry, 2010, 53, 4285-4289.	2.9	70
17	Interaction of Cisplatin with Human Superoxide Dismutase. Journal of the American Chemical Society, 2012, 134, 7009-7014.	6.6	65
18	Molecular view of an electron transfer process essential for iron–sulfur protein biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7136-7141.	3.3	63

#	Article	lF	CITATIONS
19	Structural Basis of Serine/Threonine Phosphatase Inhibition by the Archetypal Small Molecules Cantharidin and Norcantharidin. Journal of Medicinal Chemistry, 2009, 52, 4838-4843.	2.9	62
20	The Evolutionarily Conserved Trimeric Structure of CutA1 Proteins Suggests a Role in Signal Transduction. Journal of Biological Chemistry, 2003, 278, 45999-46006.	1.6	52
21	Unraveling Hidden Regulatory Sites in Structurally Homologous Metalloproteases. Journal of Molecular Biology, 2013, 425, 2330-2346.	2.0	52
22	Crystal Structure of the Catalytic Domain of Human Matrix Metalloproteinase 10. Journal of Molecular Biology, 2004, 336, 707-716.	2.0	49
23	High-Resolution Crystal Structure of the Subclass B3 Metallo-β-Lactamase BJP-1: Rational Basis for Substrate Specificity and Interaction with Sulfonamides. Antimicrobial Agents and Chemotherapy, 2010, 54, 4343-4351.	1.4	46
24	The catalytic domain of MMPâ€I studied through tagged lanthanides. FEBS Letters, 2012, 586, 557-567.	1.3	45
25	Simultaneous use of solution NMR and X-ray data in <i>REFMAC</i> 5 for joint refinement/detection of structural differences. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 958-967.	2.5	45
26	IBA57 Recruits ISCA2 to Form a [2Fe-2S] Cluster-Mediated Complex. Journal of the American Chemical Society, 2018, 140, 14401-14412.	6.6	44
27	X-ray Structures of Binary and Ternary Enzyme-Product-Inhibitor Complexes of Matrix Metalloproteinases. Angewandte Chemie - International Edition, 2003, 42, 2673-2676.	7.2	41
28	An Electron-Transfer Path through an Extended Disulfide Relay System: The Case of the Redox Protein ALR. Journal of the American Chemical Society, 2012, 134, 1442-1445.	6.6	40
29	Molecular Determinants of a Selective Matrix Metalloprotease-12 Inhibitor: Insights from Crystallography and Thermodynamic Studies. Journal of Medicinal Chemistry, 2013, 56, 1149-1159.	2.9	37
30	Characterization of PEGylated Asparaginase: New Opportunities from NMR Analysis of Large PEGylated Therapeutics. Chemistry - A European Journal, 2019, 25, 1984-1991.	1.7	32
31	Crystal Structure of the Narrow-Spectrum OXA-46 Class D β-Lactamase: Relationship between Active-Site Lysine Carbamylation and Inhibition by Polycarboxylates. Antimicrobial Agents and Chemotherapy, 2010, 54, 2167-2174.	1.4	31
32	High-resolution Structures of Retinol-binding Protein in Complex with Retinol: pH-induced Protein Structural Changes in the Crystal State. Journal of Molecular Biology, 2003, 329, 841-850.	2.0	30
33	Structure-based approach to nanomolar, water soluble matrix metalloproteinases inhibitors (MMPIs). European Journal of Medicinal Chemistry, 2010, 45, 5919-5925.	2.6	30
34	A Structure-based Proposal for the Catalytic Mechanism of the Bacterial Acid Phosphatase AphA belonging to the DDDD Superfamily of Phosphohydrolases. Journal of Molecular Biology, 2006, 355, 708-721.	2.0	29
35	A prokaryotic superoxide dismutase paralog lacking two Cu ligands: From largely unstructured in solution to ordered in the crystal. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7541-7546.	3.3	28
36	A High-Affinity Carbohydrate-Containing Inhibitor of Matrix Metalloproteinases. ChemMedChem, 2006, 1, 598-601.	1.6	28

#	Article	IF	CITATIONS
37	The First Structure of a Bacterial Class B Acid Phosphatase Reveals Further Structural Heterogeneity Among Phosphatases of the Haloacid Dehalogenase Fold. Journal of Molecular Biology, 2004, 335, 761-773.	2.0	27
38	Amino acid sequence and crystal structure of buffalo Î \pm -lactalbumin. FEBS Letters, 1996, 394, 91-95.	1.3	26
39	Human milk proteins may interfere in ELISA measurements of bovine βâ€lactoglobulin in human milk. Acta Paediatrica, International Journal of Paediatrics, 1996, 85, 543-549.	0.7	26
40	The unusual amino acid triplet Asn-Ile-Cys is a glycosylation consensus site in human alpha-lactalbumin. The Protein Journal, 1997, 16, 747-753.	1.1	25
41	The structure of human aldose reductase bound to the inhibitor IDD384. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 536-540.	2.5	25
42	Structure of chicken plasma retinol-binding protein. BBA - Proteins and Proteomics, 2001, 1550, 64-69.	2.1	21
43	Synthesis of bicyclic molecular scaffolds (BTAa): An investigation towards new selective MMP-12 inhibitors. Bioorganic and Medicinal Chemistry, 2006, 14, 7392-7403.	1.4	21
44	Integrative Approaches in Structural Biology: A More Complete Picture from the Combination of Individual Techniques. Biomolecules, 2019, 9, 370.	1.8	19
45	Structural characterization of human S100A16, a low-affinity calcium binder. Journal of Biological Inorganic Chemistry, 2011, 16, 243-256.	1.1	18
46	Discovery of a New Class of Potent MMP Inhibitors by Structure-Based Optimization of the Arylsulfonamide Scaffold. ACS Medicinal Chemistry Letters, 2013, 4, 565-569.	1.3	18
47	Identification and Structural Analysis of a Zebrafish Apo and Holo Cellular Retinol-binding Protein. Journal of Molecular Biology, 2002, 321, 527-535.	2.0	17
48	Cloning of human 3-hydroxyanthranilic acid dioxygenase in Escherichia coli: characterisation of the purified enzyme and its in vitro inhibition by Zn2+. BBA - Proteins and Proteomics, 2002, 1596, 283-292.	2.1	16
49	Structure of the extended-spectrum β-lactamase TEM-72 inhibited by citrate. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 303-306.	0.7	14
50	A Highâ€Resolution View of the Coordination Environment in a Paramagnetic Metalloprotein from its Magnetic Properties. Angewandte Chemie - International Edition, 2021, 60, 14960-14966.	7.2	13
51	Lipoyl-Homotaurine Derivative (ADM_12) Reverts Oxaliplatin-Induced Neuropathy and Reduces Cancer Cells Malignancy by Inhibiting Carbonic Anhydrase IX (CAIX). Journal of Medicinal Chemistry, 2017, 60, 9003-9011.	2.9	12
52	SARS-CoV-2 M ^{pro} inhibition by a zinc ion: structural features and hints for drug design. Chemical Communications, 2021, 57, 7910-7913.	2.2	12
53	From an Inactive Prokaryotic SOD Homologue to an Active Protein through Site-Directed Mutagenesis. Journal of the American Chemical Society, 2005, 127, 13287-13292.	6.6	11
54	Structure of matrix metalloproteinase-3 with a platinum-based inhibitor. Chemical Communications, 2013, 49, 5492.	2.2	11

#	Article	IF	CITATIONS
55	Biotin-Tagged Probes for MMP Expression and Activation: Design, Synthesis, and Binding Properties. Bioconjugate Chemistry, 2009, 20, 719-727.	1.8	10
56	Metal centers in biomolecular solid-state NMR. Journal of Structural Biology, 2019, 206, 99-109.	1.3	10
57	Title is missing!. Angewandte Chemie, 2003, 115, 2777-2780.	1.6	9
58	Crystallization and preliminary X-ray data of amine oxidase from bovine serum. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 727-729.	2.5	8
59	On the complementarity of X-ray and NMR data. Journal of Structural Biology: X, 2020, 4, 100019.	0.7	7
60	Expression, purification, crystallization and preliminary X-ray characterization of the class B acid phosphatase (AphA) fromEscherichia coli. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1058-1060.	2.5	5
61	Reviewing the Crystal Structure of S100Z and Other Members of the S100 Family: Implications in Calcium-Regulated Quaternary Structure. Methods in Molecular Biology, 2019, 1929, 487-499.	0.4	5
62	A Highâ€Resolution View of the Coordination Environment in a Paramagnetic Metalloprotein from its Magnetic Properties. Angewandte Chemie, 2021, 133, 15087-15093.	1.6	5
63	Exploration of zinc-binding groups for the design of inhibitors for the oxytocinase subfamily of M1 aminopeptidases. Bioorganic and Medicinal Chemistry, 2019, 27, 115177.	1.4	4
64	In-house high-energy-remote SAD phasing using the magic triangle: how to tackle the <i>P</i> 1 low symmetry using multiple orientations of the same crystal of human IBA57 to increase the multiplicity. Acta Crystallographica Section D: Structural Biology, 2019, 75, 317-324.	1.1	4
65	On the Mechanism of Bioinspired Formation of Inorganic Oxides: Structural Evidence of the Electrostatic Nature of the Interaction between a Mononuclear Inorganic Precursor and Lysozyme. Biomolecules, 2021, 11, 43.	1.8	4
66	Effect of Non-Lethal Selection on Spontaneous Revertants of Frameshift Mutations: The Escherichia coliÂhisF Case. Microorganisms, 2022, 10, 692.	1.6	4
67	Practical aspects of the integration of different software in protein structure solution. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 2150-2155.	2.5	3
68	Human Ind1 expression causes over-expression of E. coli beta-lactamase ampicillin resistance protein. Protein Expression and Purification, 2014, 104, 26-33.	0.6	2
69	Solving the crystal structure of human calcium-free S100Z: the siege and conquer of one of the last S100 family strongholds. Journal of Biological Inorganic Chemistry, 2017, 22, 519-526.	1.1	2
70	Interaction of Half Oxa-/Half <i>cis</i> -Platin Complex with Human Superoxide Dismutase and Induced Reduction of Neurotoxicity. ACS Medicinal Chemistry Letters, 2018, 9, 1094-1098.	1.3	2
71	Non-crystallographic symmetry in proteins: Jahn–Teller-like and Butterfly-like effects?. Journal of Biological Inorganic Chemistry, 2019, 24, 91-101.	1.1	2
72	Revisiting paramagnetic relaxation enhancements in slowly rotating systems: how long is the long range?. Magnetic Resonance, 2021, 2, 25-31.	0.8	2

#	Article	IF	CITATIONS
73	A fragment-based approach identifies an allosteric pocket that impacts malate dehydrogenase activity. Communications Biology, 2021, 4, 949.	2.0	2
74	When molecular replacement has no trivial solution: The importance of model editing in human S100Z X-ray structure solution. Inorganica Chimica Acta, 2018, 470, 402-406.	1.2	1
75	Identification and Characterization of an RRM-Containing, RNA Binding Protein in Acinetobacter baumannii. Biomolecules, 2022, 12, 922.	1.8	0