
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6205858/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteome Organization in a Genome-Reduced Bacterium. Science, 2009, 326, 1235-1240.	12.6	440
2	Structure-Based Assembly of Protein Complexes in Yeast. Science, 2004, 303, 2026-2029.	12.6	367
3	Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature, 2006, 441, 651-655.	27.8	191
4	Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nature Structural and Molecular Biology, 2012, 19, 744-753.	8.2	173
5	A Conformational Change in the Adeno-Associated Virus Type 2 Capsid Leads to the Exposure of Hidden VP1 N Termini. Journal of Virology, 2005, 79, 5296-5303.	3.4	153
6	Mechanochemical Removal of Ribosome Biogenesis Factors from Nascent 60S Ribosomal Subunits. Cell, 2009, 138, 911-922.	28.9	141
7	The Assembly-Activating Protein Promotes Capsid Assembly of Different Adeno-Associated Virus Serotypes. Journal of Virology, 2011, 85, 12686-12697.	3.4	136
8	Cathelicidins Have Direct Antiviral Activity against Respiratory Syncytial Virus In Vitro and Protective Function In Vivo in Mice and Humans. Journal of Immunology, 2016, 196, 2699-2710.	0.8	129
9	The gross structure of the respiratory complex I: a Lego System. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1608, 1-9.	1.0	127
10	Electron cryoâ€microscopy and image reconstruction of adenoâ€associated virus type 2 empty capsids. EMBO Reports, 2001, 2, 997-1002.	4.5	126
11	Geminate Structures of African Cassava Mosaic Virus. Journal of Virology, 2004, 78, 6758-6765.	3.4	107
12	Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel. Nature Structural and Molecular Biology, 2012, 19, 1234-1241.	8.2	103
13	Purification of Nuclear Poly(A)-binding Protein Nab2 Reveals Association with the Yeast Transcriptome and a Messenger Ribonucleoprotein Core Structure. Journal of Biological Chemistry, 2009, 284, 34911-34917.	3.4	99
14	Direct indication for the existence of a double stalk in CF 0 F 1 1 1Edited by J. Karn. Journal of Molecular Biology, 1998, 281, 757-762.	4.2	98
15	Cryo-electron microscopy of hepatitis B virions reveals variability in envelope capsid interactions. EMBO Journal, 2007, 26, 4160-4167.	7.8	95
16	A complex prediction: threeâ€dimensional model of the yeast exosome. EMBO Reports, 2002, 3, 628-635.	4.5	89
17	Architecture of the mycobacterial type VII secretion system. Nature, 2019, 576, 321-325.	27.8	89
18	A Novel, Enzymatically Active Conformation of the Escherichia coli NADH:Ubiquinone Oxidoreductase (Complex I). Journal of Biological Chemistry, 2002, 277, 17970-17977.	3.4	88

#	Article	IF	CITATIONS
19	Molecular basis for the functional interaction of dynein light chain with the nuclear-pore complex. Nature Cell Biology, 2007, 9, 788-796.	10.3	84
20	Insights into Transcription Initiation and Termination from the Electron Microscopy Structure of Yeast RNA Polymerase III. Molecular Cell, 2007, 25, 813-823.	9.7	74
21	Three-dimensional Map of a Plant V-ATPase Based on Electron Microscopy. Journal of Biological Chemistry, 2002, 277, 13115-13121.	3.4	70
22	A Different Conformation for EGC Stator Subcomplex in Solution and in the Assembled Yeast V-ATPase: Possible Implications for Regulatory Disassembly. Structure, 2008, 16, 1789-1798.	3.3	69
23	Hepatitis B virus core protein phosphorylation: Identification of the SRPK1 target sites and impact of their occupancy on RNA binding and capsid structure. PLoS Pathogens, 2018, 14, e1007488.	4.7	67
24	Homologous bd oxidases share the same architecture but differ in mechanism. Nature Communications, 2019, 10, 5138.	12.8	65
25	Conformational flexibility of RNA polymerase III during transcriptional elongation. EMBO Journal, 2010, 29, 3762-3772.	7.8	64
26	The structure of photosystem I from the thermophilic cyanobacterium Synechococcus sp. determined by electron microscopy of two-dimensional crystals. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1100, 125-136.	1.0	59
27	Direct visualisation of conformational changes in EF 0 F 1 by electron microscopy 1 1Edited by W. Baumeister. Journal of Molecular Biology, 2000, 296, 449-457.	4.2	58
28	Packaging of up to 240 subunits of a 17 kDa nuclease into the interior of recombinant hepatitis B virus capsids. FEBS Letters, 2000, 481, 169-176.	2.8	55
29	Structure of the Mechanosensitive Channel MscS Embedded in the Membrane Bilayer. Journal of Molecular Biology, 2019, 431, 3081-3090.	4.2	52
30	Structural reorganization of the chromatin remodeling enzyme Chd1 upon engagement with nucleosomes. ELife, 2017, 6, .	6.0	51
31	Building the Stator of the Yeast Vacuolar-ATPase. Journal of Biological Chemistry, 2004, 279, 40670-40676.	3.4	49
32	Think Beyond the Core: Impact of the Hydrophilic Corona on Drug Solubilization Using Polymer Micelles. ACS Applied Materials & Interfaces, 2020, 12, 24531-24543.	8.0	49
33	Hepatitis B Virus Capsid-like Particles Can Display the Complete, Dimeric Outer Surface Protein C and Stimulate Production of Protective Antibody Responses against Borrelia burgdorferi Infection. Journal of Biological Chemistry, 2006, 281, 17474-17481.	3.4	48
34	The structure of ATP synthase from chloroplasts. Conformational changes of CF1 studied by electron microscopy. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1098, 131-143.	1.0	46
35	The structure of the H+-ATP synthase from chloroplasts and its subcomplexes as revealed by electron microscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1458, 404-416.	1.0	46
36	The Leishmania tarentolae exosome: Purification and structural analysis by electron microscopy. Molecular and Biochemical Parasitology, 2008, 159, 24-29.	1.1	46

#	Article	IF	CITATIONS
37	Reconstitution of Nup157 and Nup145N into the Nup84 Complex*[boxs]. Journal of Biological Chemistry, 2005, 280, 18442-18451.	3.4	45
38	Elucidation of the Stator Organization in the V-ATPase of Neurospora crassa. Journal of Molecular Biology, 2005, 349, 659-669.	4.2	43
39	Structural Basis of Poxvirus Transcription: Vaccinia RNA Polymerase Complexes. Cell, 2019, 179, 1537-1550.e19.	28.9	41
40	High Plasticity of the Hepatitis B Virus Capsid Revealed by Conformational Stress. Journal of Molecular Biology, 2006, 356, 812-822.	4.2	40
41	A Unique Resting Position of the ATP-synthase from Chloroplasts. Journal of Biological Chemistry, 2003, 278, 18544-18549.	3.4	39
42	Structure of Mutant Hepatitis B Core Protein Capsids with Premature Secretion Phenotype. Journal of Molecular Biology, 2018, 430, 4941-4954.	4.2	39
43	The Mitosis and Neurodevelopment Proteins NDE1 and NDEL1 Form Dimers, Tetramers, and Polymers with a Folded Back Structure in Solution. Journal of Biological Chemistry, 2012, 287, 32381-32393.	3.4	38
44	Crystal structure of Schmallenberg orthobunyavirus nucleoprotein–RNA complex reveals a novel RNA sequestration mechanism. Rna, 2013, 19, 1129-1136.	3.5	37
45	Precise mapping of subunits in multiprotein complexes by a versatile electron microscopy label. Nature Structural and Molecular Biology, 2010, 17, 775-778.	8.2	36
46	Structural organization of the V-ATPase and its implications for regulatory assembly and disassembly. Biochemical Society Transactions, 2008, 36, 1027-1031.	3.4	35
47	Two structurally distinct domains of the nucleoporin Nup170 cooperate to tether a subset of nucleoporins to nuclear pores. Journal of Cell Biology, 2009, 185, 387-395.	5.2	35
48	Insights into the structure of the CCR4-NOT complex by electron microscopy. FEBS Letters, 2011, 585, 2182-2186.	2.8	35
49	Near-Atomic Resolution Structure of a Plant Geminivirus Determined by Electron Cryomicroscopy. Structure, 2017, 25, 1303-1309.e3.	3.3	35
50	Peripheral Stator of the Yeast V-ATPase:Â Stoichiometry and Specificity of Interaction between the EG Complex and Subunits C and Hâ€. Biochemistry, 2005, 44, 15906-15914.	2.5	34
51	K+-Translocating KdpFABC P-Type ATPase from Escherichia coli Acts as a Functional and Structural Dimer. Biochemistry, 2008, 47, 3564-3575.	2.5	32
52	Mechanosensitive channel gating by delipidation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	32
53	The MscS-like channel Ynal has a gating mechanism based on flexible pore helices. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28754-28762.	7.1	30
54	Inverse Thermogelation of Aqueous Triblock Copolymer Solutions into Macroporous Shear-Thinning 3D Printable Inks. ACS Applied Materials & Interfaces, 2020, 12, 12445-12456.	8.0	28

#	Article	IF	CITATIONS
55	Target highlights in <scp>CASP14</scp> : Analysis of models by structure providers. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1647-1672.	2.6	27
56	Assembly of the Eukaryotic PLP-Synthase Complex from Plasmodium and Activation of the Pdx1 Enzyme. Structure, 2012, 20, 172-184.	3.3	26
57	Structure of Escherichia coli cytochrome bd-II type oxidase with bound aurachin D. Nature Communications, 2021, 12, 6498.	12.8	25
58	Modular architecture of eukaryotic RNase P and RNase MRP revealed by electron microscopy. Nucleic Acids Research, 2012, 40, 3275-3288.	14.5	23
59	Capabilities of the Falcon III detector for single-particle structure determination. Ultramicroscopy, 2019, 203, 145-154.	1.9	21
60	Geometrical and Structural Dynamics of Imatinib within Biorelevant Colloids. Molecular Pharmaceutics, 2018, 15, 4470-4480.	4.6	20
61	Electron cryomicroscopy of two-dimensional crystals of the H+-ATPase from chloroplasts. FEBS Letters, 1995, 373, 262-264.	2.8	19
62	Conformational Changes in Adeno-Associated Virus Type 1 Induced by Genome Packaging. Journal of Molecular Biology, 2011, 409, 427-438.	4.2	19
63	The Structure of Ynal Implies Structural and Mechanistic Conservation in the MscS Family of Mechanosensitive Channels. Structure, 2015, 23, 1705-1714.	3.3	19
64	Molybdate-Uptake Genes and Molybdopterin-Biosynthesis Genes on a Bacterial Plasmid. Characterization of MoeA as a Filament-Forming Protein with Adenosinetriphosphatase Activity. FEBS Journal, 1997, 250, 524-531.	0.2	17
65	Nucleotide-induced conformational changes in the <i>Escherichia coli</i> NADH:ubiquinone oxidoreductase (complex I). Biochemical Society Transactions, 2008, 36, 971-975.	3.4	17
66	Slowly folding surface extension in the prototypic avian hepatitis B virus capsid governs stability. ELife, 2020, 9, .	6.0	13
67	Analyzing RNA polymerase III by electron cryomicroscopy. RNA Biology, 2011, 8, 760-765.	3.1	12
68	Structural basis of the complete poxvirus transcription initiation process. Nature Structural and Molecular Biology, 2021, 28, 779-788.	8.2	12
69	Conformational Plasticity of Hepatitis B Core Protein Spikes Promotes Peptide Binding Independent of the Secretion Phenotype. Microorganisms, 2021, 9, 956.	3.6	10
70	The Structure of the ATP-Synthase from Chloroplasts. , 1990, , 247-276.		10
71	Biophysical Characterization and Activity of Lymphostatin, a Multifunctional Virulence Factor of Attaching and Effacing Escherichia coli. Journal of Biological Chemistry, 2016, 291, 5803-5816.	3.4	9
72	Calcium phosphate-based biomaterials trigger human macrophages to release extracellular traps. Biomaterials, 2022, 285, 121521.	11.4	9

#	Article	IF	CITATIONS
73	Electron cryo-microscopy of graphite in amorphous ice. Ultramicroscopy, 1995, 58, 417-424.	1.9	8
74	Systematic Bioinformatics and Experimental Validation of Yeast Complexes Reduces the Rate of Attrition during Structural Investigations. Structure, 2010, 18, 1075-1082.	3.3	8
75	Controlling Supramolecular Structures of Drugs by Light. Molecular Pharmaceutics, 2020, 17, 4704-4708.	4.6	7
76	Dealing with Particles in Different Conformational States by Electron Microscopy and Image Processing. Journal of Structural Biology, 2001, 133, 214-220.	2.8	6
77	Solution structure of the KdpFABC P-type ATPase from Escherichia coli by electron microscopic single particle analysis. Journal of Structural Biology, 2009, 166, 295-302.	2.8	6
78	Regulatory assembly of the vacuolar proton pump V o V 1 -ATPase in yeast cells by FLIM-FRET. , 2010, , .		6
79	Concentration and composition dependent aggregation of Pluronic- and Poly-(2-oxazolin)-Efavirenz formulations in biorelevant media. Journal of Colloid and Interface Science, 2022, 606, 1179-1192.	9.4	6
80	ATP synthase. EMBO Reports, 2000, 1, 223-224.	4.5	5
81	Binding of a Pocket Factor to Hepatitis B Virus Capsids Changes the Rotamer Conformation of Phenylalanine 97. Viruses, 2021, 13, 2115.	3.3	4
82	Single-particle applications at intermediate resolution. Advances in Protein Chemistry and Structural Biology, 2010, 81, 61-88.	2.3	3
83	More Than Just Closed and Open: Unraveling a Mechanosensor. Trends in Biochemical Sciences, 2021, 46, 623-625.	7.5	3
84	The Structure of ATPsynthases in Photosynthesis and Respiration. Advances in Photosynthesis and Respiration, 2014, , 111-132.	1.0	1
85	Hepatitis B Core Protein Capsids. Sub-Cellular Biochemistry, 2021, 96, 451-470.	2.4	1