
Robert E Reiter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6205812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Significant changes in macrophage and CD8 T cell densities in primary prostate tumors 2 weeks after SBRT. Prostate Cancer and Prostatic Diseases, 2023, 26, 207-209.	3.9	8
2	Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography Compared with Conventional Imaging for Initial Staging of Treatment-naĀ ve Intermediate- and High-risk Prostate Cancer: A Retrospective Single-center Study. European Urology Oncology, 2022, 5, 544-552.	5.4	16
3	Identifying the Best Candidates for Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography as the Primary Staging Approach Among Men with High-risk Prostate Cancer and Negative Conventional Imaging. European Urology Oncology, 2022, 5, 100-103.	5.4	18
4	The utility of prostate MRI within active surveillance: description of the evidence. World Journal of Urology, 2022, 40, 71-77.	2.2	6
5	Interplay Between Duration of Androgen Deprivation Therapy and External Beam Radiotherapy With or Without a Brachytherapy Boost for Optimal Treatment of High-risk Prostate Cancer. JAMA Oncology, 2022, 8, e216871.	7.1	18
6	Androgen deprivation therapy use and duration with definitive radiotherapy for localised prostate cancer: an individual patient data meta-analysis. Lancet Oncology, The, 2022, 23, 304-316.	10.7	68
7	Impact of a Novel Molecular Imaging Modality, Prostate-Specific Membrane Antigen Positron Emission Tomography, on the Management of Prostate Cancer. Journal of Clinical Oncology, 2022, 40, 1497-1499.	1.6	2
8	High-dose Radiotherapy or Androgen Deprivation Therapy (HEAT) as Treatment Intensification for Localized Prostate Cancer: An Individual Patient–data Network Meta-analysis from the MARCAP Consortium. European Urology, 2022, 82, 106-114.	1.9	19
9	Prostate cancer multiparametric magnetic resonance imaging visibility is a tumor-intrinsic phenomena. Journal of Hematology and Oncology, 2022, 15, 48.	17.0	6
10	Effect of 3-Dimensional, Virtual Reality Models for Surgical Planning of Robotic Prostatectomy on Trifecta Outcomes: A Randomized Clinical Trial. Journal of Urology, 2022, 208, 618-625.	0.4	8
11	A Systematic Review and Meta-analysis of Local Salvage Therapies After Radiotherapy for Prostate Cancer (MASTER). European Urology, 2021, 80, 280-292.	1.9	140
12	The intraprostatic immune environment after stereotactic body radiotherapy is dominated by myeloid cells. Prostate Cancer and Prostatic Diseases, 2021, 24, 135-139.	3.9	11
13	High-dose per Fraction Radiotherapy Induces Both Antitumor Immunity and Immunosuppressive Responses in Prostate Tumors. Clinical Cancer Research, 2021, 27, 1505-1515.	7.0	36
14	False positive PSMA PET for tumor remnants in the irradiated prostate and other interpretation pitfalls in a prospective multi-center trial. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 501-508.	6.4	30
15	Underutilization of Androgen Deprivation Therapy with External Beam Radiotherapy in Men with High-grade Prostate Cancer. European Urology Oncology, 2021, 4, 327-330.	5.4	3
16	Predicting Pathological Tumor Size in Prostate Cancer Based on Multiparametric Prostate Magnetic Resonance Imaging and Preoperative Findings. Journal of Urology, 2021, 205, 444-451.	0.4	30
17	Prostate cancer. Nature Reviews Disease Primers, 2021, 7, 9.	30.5	434
18	NCCN Guidelines Insights: Prostate Cancer, Version 1.2021. Journal of the National Comprehensive Cancer Network: JNCCN, 2021, 19, 134-143.	4.9	299

#	Article	lF	CITATIONS
19	The Role of PSMA PET/CT and PET/MRI in the Initial Staging of Prostate Cancer. European Urology Focus, 2021, 7, 258-266.	3.1	19
20	Caught Between a Rock and a Hard Place. International Journal of Radiation Oncology Biology Physics, 2021, 109, 846-847.	0.8	0
21	Tissue clearing techniques for threeâ€dimensional optical imaging of intact human prostate and correlations with multiâ€parametric MRI. Prostate, 2021, 81, 521-529.	2.3	1
22	Comparison of Multimodal Therapies and Outcomes Among Patients With High-Risk Prostate Cancer With Adverse Clinicopathologic Features. JAMA Network Open, 2021, 4, e2115312.	5.9	12
23	Pre-conditioning modifies the TME to enhance solid tumor CAR TÂcell efficacy and endogenous protective immunity. Molecular Therapy, 2021, 29, 2335-2349.	8.2	51
24	Radiation therapy dose and androgen deprivation therapy in localized prostate cancer: a meta-regression of 5-year outcomes in phase III randomized controlled trials. Prostate Cancer and Prostatic Diseases, 2021, , .	3.9	8
25	Patterns of Clinical Progression in Radiorecurrent High-risk Prostate Cancer. European Urology, 2021, 80, 142-146.	1.9	12
26	Textured-Based Deep Learning in Prostate Cancer Classification with 3T Multiparametric MRI: Comparison with PI-RADS-Based Classification. Diagnostics, 2021, 11, 1785.	2.6	13
27	Optimizing Spatial Biopsy Sampling for the Detection of Prostate Cancer. Journal of Urology, 2021, 206, 595-603.	0.4	19
28	Diagnostic Accuracy of ⁶⁸ Ga-PSMA-11 PET for Pelvic Nodal Metastasis Detection Prior to Radical Prostatectomy and Pelvic Lymph Node Dissection. JAMA Oncology, 2021, 7, 1635.	7.1	138
29	Prognosis Associated With Luminal and Basal Subtypes of Metastatic Prostate Cancer. JAMA Oncology, 2021, 7, 1644.	7.1	21
30	MRI-guided Biopsy in Active Surveillance of Prostate Cancer. Journal of Urology, 2021, , 101097JU000000000002343.	0.4	2
31	Performance of a Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography–Derived Risk-Stratification Tool for High-risk and Very High-risk Prostate Cancer. JAMA Network Open, 2021, 4, e2138550.	5.9	18
32	[89Zr]A2cDb Immuno-PET of Prostate Cancer in a Human Prostate Stem Cell Antigen Knock-in (hPSCA KI) Syngeneic Model. Molecular Imaging and Biology, 2020, 22, 367-376.	2.6	6
33	Prostate-only Versus Whole-pelvis Radiation with or Without a Brachytherapy Boost for Gleason Grade Group 5 Prostate Cancer: A Retrospective Analysis. European Urology, 2020, 77, 3-10.	1.9	18
34	Dynamic contrast-enhanced (DCE) MR imaging: the role of qualitative and quantitative parameters for evaluating prostate tumors stratified by Gleason score and PI-RADS v2. Abdominal Radiology, 2020, 45, 2225-2234.	2.1	17
35	Efficacy of a preprostatectomy multi-modal penile rehabilitation regimen on recovery of postoperative erectile function. International Journal of Impotence Research, 2020, 32, 323-328.	1.8	17
36	Local Failure and Survival After Definitive Radiotherapy for Aggressive Prostate Cancer: An Individual Patient-level Meta-analysis of Six Randomized Trials. European Urology, 2020, 77, 201-208.	1.9	37

#	Article	IF	CITATIONS
37	Focal Therapy Should Not Be Considered for Men with Gleason Grade Group 3–5 Prostate Cancer. European Urology Focus, 2020, 6, 203-204.	3.1	2
38	Germline polymorphisms associated with impaired survival outcomes and somatic tumor alterations in advanced prostate cancer. Prostate Cancer and Prostatic Diseases, 2020, 23, 316-323.	3.9	6
39	The DNA methylation landscape of advanced prostate cancer. Nature Genetics, 2020, 52, 778-789.	21.4	198
40	Evaluation of [1311]I- and [177Lu]Lu-DTPA-A11 Minibody for Radioimmunotherapy in a Preclinical Model of PSCA-Expressing Prostate Cancer. Molecular Imaging and Biology, 2020, 22, 1380-1391.	2.6	10
41	Autoantibody Landscape in Patients with Advanced Prostate Cancer. Clinical Cancer Research, 2020, 26, 6204-6214.	7.0	10
42	Transcriptional profiling identifies an androgen receptor activity-low, stemness program associated with enzalutamide resistance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12315-12323.	7.1	87
43	Impact of ⁶⁸ Ga-PSMA-11 PET on the Management of Recurrent Prostate Cancer in a Prospective Single-Arm Clinical Trial. Journal of Nuclear Medicine, 2020, 61, 1793-1799.	5.0	74
44	Transcriptomic Heterogeneity of Gleason Grade Group 5 Prostate Cancer. European Urology, 2020, 78, 327-332.	1.9	18
45	Cost-Effectiveness of Metastasis-Directed Therapy in Oligorecurrent Hormone-Sensitive Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2020, 108, 917-926.	0.8	11
46	Prostate Microstructure in Prostate Cancer Using 3-T MRI with Diffusion-Relaxation Correlation Spectrum Imaging: Validation with Whole-Mount Digital Histopathology. Radiology, 2020, 296, 348-355.	7.3	35
47	Phase 1 Trial of Stereotactic Body Radiation Therapy Neoadjuvant to Radical Prostatectomy for Patients With High-Risk Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2020, 108, 930-935.	0.8	12
48	Influence of the Location and Zone of Tumor in Prostate Cancer Detection and Localization on 3-T Multiparametric MRI Based on PI-RADS Version 2. American Journal of Roentgenology, 2020, 214, 1101-1111.	2.2	17
49	Management of Patients with Advanced Prostate Cancer: Report of the Advanced Prostate Cancer Consensus Conference 2019. European Urology, 2020, 77, 508-547.	1.9	278
50	Impact of ⁶⁸ Ga-PSMA-11 PET/CT on Staging and Management of Prostate Cancer Patients in Various Clinical Settings: A Prospective Single-Center Study. Journal of Nuclear Medicine, 2020, 61, 1153-1160.	5.0	94
51	The Role of Opioids and Their Receptors in Urological Malignancy: A Review. Journal of Urology, 2020, 204, 1150-1159.	0.4	14
52	Evolving understanding and categorization of prostate cancer: preventing progression to metastatic castration-resistant prostate cancer: RADAR IV. Canadian Journal of Urology, 2020, 27, 10352-10362.	0.0	1
53	A system using patientâ€specific 3Dâ€printed molds to spatially align in vivo MRI with ex vivo MRI and wholeâ€mount histopathology for prostate cancer research. Journal of Magnetic Resonance Imaging, 2019, 49, 270-279.	3.4	22
54	Apparent Diffusion Coefficient (ADC) Ratio Versus Conventional ADC for Detecting Clinically Significant Prostate Cancer With 3-T MRI. American Journal of Roentgenology, 2019, 213, W134-W142.	2.2	28

#	Article	IF	CITATIONS
55	18F-fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncology, The, 2019, 20, 1286-1294.	10.7	338
56	Cancer core length from targeted biopsy: an index of prostate cancer volume and pathological stage. BJU International, 2019, 124, 275-281.	2.5	14
57	Molecular Hallmarks of Multiparametric Magnetic Resonance Imaging Visibility in Prostate Cancer. European Urology, 2019, 76, 18-23.	1.9	50
58	The Evolving Role of Prostate-Specific Membrane Antigen–Based Diagnostics and Therapeutics in Prostate Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2019, 39, 321-330.	3.8	33
59	Detection and Localization of Prostate Cancer at 3-T Multiparametric MRI Using PI-RADS Segmentation. American Journal of Roentgenology, 2019, 212, W122-W131.	2.2	8
60	Do contemporary imaging and biopsy techniques reliably identify unilateral prostate cancer? Implications for hemiablation patient selection. Cancer, 2019, 125, 2955-2964.	4.1	21
61	Assessment of ⁶⁸ Ga-PSMA-11 PET Accuracy in Localizing Recurrent Prostate Cancer. JAMA Oncology, 2019, 5, 856.	7.1	493
62	Genomic Drivers of Poor Prognosis and Enzalutamide Resistance in Metastatic Castration-resistant Prostate Cancer. European Urology, 2019, 76, 562-571.	1.9	104
63	Systemic and tumor-directed therapy for oligometastatic prostate cancer: study protocol for a phase Il trial for veterans with de novo oligometastatic disease. BMC Cancer, 2019, 19, 291.	2.6	17
64	MEK-ERK signaling is a therapeutic target in metastatic castration resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2019, 22, 531-538.	3.9	66
65	Automatic Prostate Zonal Segmentation Using Fully Convolutional Network With Feature Pyramid Attention. IEEE Access, 2019, 7, 163626-163632.	4.2	71
66	Prostate Cancer Pulmonary Metastasis Presenting as a Ground-Glass Pulmonary Nodule on 68Ga-PSMA-11 PET/CT. Clinical Nuclear Medicine, 2019, 44, e353-e356.	1.3	5
67	Association of Gleason Grade With Androgen Deprivation Therapy Duration and Survival Outcomes. JAMA Oncology, 2019, 5, 91.	7.1	27
68	Adjusting Our Approach to Multiparametric Magnetic Resonance Imaging-based Targeted Prostate Biopsies: Considerations After the FUTURE Trial. European Urology, 2019, 75, 591-592.	1.9	0
69	Near-Infrared Dye-Labeled Anti-Prostate Stem Cell Antigen Minibody Enables Real-Time Fluorescence Imaging and Targeted Surgery in Translational Mouse Models. Clinical Cancer Research, 2019, 25, 188-200.	7.0	23
70	Solitary Mucinous Prostate Adenocarcinoma Lung Metastasis Detected by 68Ga-PSMA-11 PET/CT. Clinical Genitourinary Cancer, 2019, 17, e53-e55.	1.9	8
71	Detection of Individual Prostate Cancer Foci via Multiparametric Magnetic Resonance Imaging. European Urology, 2019, 75, 712-720.	1.9	187
72	PI-RADS Version 2 Category on 3 Tesla Multiparametric Prostate Magnetic Resonance Imaging Predicts Oncologic Outcomes in Gleason 3 + 4 Prostate Cancer on Biopsy. Journal of Urology, 2019, 201, 91-97.	0.4	16

#	Article	IF	CITATIONS
73	Three Tesla Multiparametric Magnetic Resonance Imaging: Comparison of Performance with and without Endorectal Coil for Prostate Cancer Detection, PI-RADSâ,,¢ version 2 Category and Staging with Whole Mount Histopathology Correlation. Journal of Urology, 2019, 201, 496-502.	0.4	21
74	Radical Prostatectomy, External Beam Radiotherapy, or External Beam Radiotherapy With Brachytherapy Boost and Disease Progression and Mortality in Patients With Gleason Score 9-10 Prostate Cancer. JAMA - Journal of the American Medical Association, 2018, 319, 896.	7.4	252
75	Building a high-resolution T2-weighted MR-based probabilistic model of tumor occurrence in the prostate. Abdominal Radiology, 2018, 43, 2487-2496.	2.1	2
76	Potential Impact of ⁶⁸ Ga-PSMA-11 PET/CT on the Planning of Definitive Radiation Therapy for Prostate Cancer. Journal of Nuclear Medicine, 2018, 59, 1714-1721.	5.0	81
77	Pathological and 3 Tesla Volumetric Magnetic Resonance Imaging Predictors of Biochemical Recurrence after Robotic Assisted Radical Prostatectomy: Correlation with Whole Mount Histopathology. Journal of Urology, 2018, 199, 1218-1223.	0.4	17
78	3T multiparametric MR imaging, PIRADSv2-based detection of index prostate cancer lesions in the transition zone and the peripheral zone using whole mount histopathology as reference standard. Abdominal Radiology, 2018, 43, 3117-3124.	2.1	13
79	Dual-Modality Immuno-PET and Near-Infrared Fluorescence Imaging of Pancreatic Cancer Using an Anti–Prostate Stem Cell Antigen Cys-Diabody. Journal of Nuclear Medicine, 2018, 59, 1398-1405.	5.0	40
80	Detection Threshold and Reproducibility of ⁶⁸ Ga-PSMA11 PET/CT in a Mouse Model of Prostate Cancer. Journal of Nuclear Medicine, 2018, 59, 1392-1397.	5.0	21
81	A 17-Gene Genomic Prostate Score Assay Provides Independent Information on Adverse Pathology in the Setting of Combined Multiparametric Magnetic Resonance Imaging Fusion Targeted and Systematic Prostate Biopsy. Journal of Urology, 2018, 200, 564-572.	0.4	28
82	Wrong to be Right. American Journal of Clinical Oncology: Cancer Clinical Trials, 2018, 41, 1-5.	1.3	3
83	Anatomic and Molecular Imaging in Prostate Cancer. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a030619.	6.2	2
84	Why Targeting PSMA Is a Game Changer in the Management of Prostate Cancer. Journal of Nuclear Medicine, 2018, 59, 177-182.	5.0	49
85	Focal Therapy Eligibility Determined by Magnetic Resonance Imaging/Ultrasound Fusion Biopsy. Journal of Urology, 2018, 199, 453-458.	0.4	47
86	Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer. Oncolmmunology, 2018, 7, e1380764.	4.6	111
87	Impact of ⁶⁸ Ga-PSMA-11 PET/CT on the Management of Prostate Cancer Patients with Biochemical Recurrence. Journal of Nuclear Medicine, 2018, 59, 434-441.	5.0	113
88	Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE): Proposed miTNM Classification for the Interpretation of PSMA-Ligand PET/CT. Journal of Nuclear Medicine, 2018, 59, 469-478.	5.0	372
89	Preclinical evaluation of PSMA expression in response to androgen receptor blockade for theranostics in prostate cancer. EJNMMI Research, 2018, 8, 96.	2.5	58
90	First Postprostatectomy Ultrasensitive Prostate-specific Antigen Predicts Survival in Patients with High-risk Prostate Cancer Pathology. European Urology Oncology, 2018, 1, 378-385.	5.4	4

#	Article	IF	CITATIONS
91	Dual-Modality ImmunoPET/Fluorescence Imaging of Prostate Cancer with an Anti-PSCA Cys-Minibody. Theranostics, 2018, 8, 5903-5914.	10.0	33
92	Clinical Outcomes for Patients With Gleason Score 10 Prostate Adenocarcinoma: Results From a Multi-institutional Consortium Study. International Journal of Radiation Oncology Biology Physics, 2018, 101, 883-888.	0.8	10
93	Radical prostatectomy then and now: Surgical overtreatment of prostate cancer is declining from 2009 to 2016 at a tertiary referral center. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 401.e19-401.e25.	1.6	4
94	Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell, 2018, 174, 758-769.e9.	28.9	459
95	Multiregional Radiogenomic Assessment of Prostate Microenvironments with Multiparametric MR Imaging and DNA Whole-Exome Sequencing of Prostate Glands with Adenocarcinoma. Radiology, 2017, 284, 109-119.	7.3	29
96	Prostate Cancer Antigen 3 Score Does Not Predict for Adverse Pathologic Features at Radical Prostatectomy or for Progression-free Survival in Clinically Localized, Intermediate- and High-risk Prostate Cancer. Urology, 2017, 107, 171-177.	1.0	3
97	Concordance of Circulating Tumor DNA and Matched Metastatic Tissue Biopsy in Prostate Cancer. Journal of the National Cancer Institute, 2017, 109, .	6.3	288
98	Clinical Outcomes for Patients with Gleason Score 9–10 Prostate Adenocarcinoma Treated With Radiotherapy or Radical Prostatectomy: A Multi-institutional Comparative Analysis. European Urology, 2017, 71, 766-773.	1.9	83
99	Magnetic Resonance Imaging Underestimation of Prostate Cancer Geometry: Use of Patient Specific Molds to Correlate Images with Whole Mount Pathology. Journal of Urology, 2017, 197, 320-326.	0.4	173
100	Is Targeted Biopsy Applicable to Patients on Active Surveillance?. European Urology, 2017, 71, 181-182.	1.9	0
101	Multi-parametric magnetic resonance imaging as a management decision tool. Translational Andrology and Urology, 2017, 6, 472-482.	1.4	16
102	Imaging and Pathology Correlations for Different Risk Stratification Models for Intermediate-risk Prostate Cancer. Anticancer Research, 2017, 37, 1237-1242.	1.1	1
103	Prostate cancer detection with magnetic resonanceâ€ultrasound fusion biopsy: The role of systematic and targeted biopsies. Cancer, 2016, 122, 884-892.	4.1	346
104	Activation of Notch1 synergizes with multiple pathways in promoting castration-resistant prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6457-E6466.	7.1	44
105	Risk stratification of prostate cancer 2016. Scandinavian Journal of Clinical and Laboratory Investigation, 2016, 76, S54-S59.	1.2	6
106	First-in-Human Imaging with ⁸⁹ Zr-Df-IAB2M Anti-PSMA Minibody in Patients with Metastatic Prostate Cancer: Pharmacokinetics, Biodistribution, Dosimetry, and Lesion Uptake. Journal of Nuclear Medicine, 2016, 57, 1858-1864.	5.0	116
107	Fluorescent Image–Guided Surgery with an Anti-Prostate Stem Cell Antigen (PSCA) Diabody Enables Targeted Resection of Mouse Prostate Cancer Xenografts in Real Time. Clinical Cancer Research, 2016, 22, 1403-1412.	7.0	40
108	Risk stratification of prostate cancer in the modern era. Current Opinion in Urology, 2015, 25, 246-251.	1.8	11

#	Article	IF	CITATIONS
109	Accelerated echo planar J â€resolved spectroscopic imaging in prostate cancer: a pilot validation of nonâ€linear reconstruction using total variation and maximum entropy. NMR in Biomedicine, 2015, 28, 1366-1373.	2.8	13
110	A fully human scFv phage display library for rapid antibody fragment reformatting. Protein Engineering, Design and Selection, 2015, 28, 307-316.	2.1	22
111	Prostate diffusion imaging with distortion correction. Magnetic Resonance Imaging, 2015, 33, 1178-1181.	1.8	29
112	Characteristics of Detected and Missed Prostate Cancer Foci on 3-T Multiparametric MRI Using an Endorectal Coil Correlated With Whole-Mount Thin-Section Histopathology. American Journal of Roentgenology, 2015, 205, W87-W92.	2.2	98
113	MRI-Derived Restriction Spectrum Imaging Cellularity Index is Associated with High Grade Prostate Cancer on Radical Prostatectomy Specimens. Frontiers in Oncology, 2015, 5, 30.	2.8	20
114	Multifocality and Prostate Cancer Detection by Multiparametric Magnetic Resonance Imaging: Correlation with Whole-mount Histopathology. European Urology, 2015, 67, 569-576.	1.9	362
115	Applications of ImmunoPET: Using 124I-Anti-PSCA A11 Minibody for Imaging Disease Progression and Response to Therapy in Mouse Xenograft Models of Prostate Cancer. Clinical Cancer Research, 2014, 20, 6367-6378.	7.0	29
116	The Role of Magnetic Resonance Imaging in Delineating Clinically Significant Prostate Cancer. Urology, 2014, 83, 369-375.	1.0	60
117	Multidimensional MR spectroscopic imaging of prostate cancer <i>in vivo</i> . NMR in Biomedicine, 2014, 27, 53-66.	2.8	28
118	Initial experience with electronic tracking of specific tumor sites in men undergoing active surveillance of prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2014, 32, 952-957.	1.6	33
119	Diffusion-Weighted Imaging in Cancer: Physical Foundations and Applications of Restriction Spectrum Imaging. Cancer Research, 2014, 74, 4638-4652.	0.9	179
120	Quantitative ImmunoPET of Prostate Cancer Xenografts with ⁸⁹ Zr- and ¹²⁴ I-Labeled Anti-PSCA A11 Minibody. Journal of Nuclear Medicine, 2014, 55, 452-459.	5.0	51
121	Magnetic Resonance Imaging-Ultrasound Fusion Biopsy for Prediction of Final Prostate Pathology. Journal of Urology, 2014, 192, 1367-1373.	0.4	121
122	Value of Targeted Prostate Biopsy Using Magnetic Resonance–Ultrasound Fusion in Men with Prior Negative Biopsy and Elevated Prostate-specific Antigen. European Urology, 2014, 65, 809-815.	1.9	337
123	Enrichment of putative prostate cancer stem cells after androgen deprivation: Upregulation of pluripotency transactivators concurs with resistance to androgen deprivation in LNCaP cell lines. Prostate, 2013, 73, 1378-1390.	2.3	31
124	Fine-tuning robot-assisted radical prostatectomy planning with MRI. Urologic Oncology: Seminars and Original Investigations, 2013, 31, 766-775.	1.6	11
125	Use of MR Imaging to Determine Preservation of the Neurovascular Bundles at Robotic-assisted Laparoscopic Prostatectomy. Radiology, 2012, 262, 874-883.	7.3	124
126	Diffusion Tensor Magnetic Resonance Tractography of the Prostate: Feasibility for Mapping Periprostatic Fibers. Urology, 2012, 80, 219-223.	1.0	34

#	Article	IF	CITATIONS
127	MR spectroscopic imaging and diffusionâ€weighted imaging of prostate cancer with Gleason scores. Journal of Magnetic Resonance Imaging, 2012, 36, 697-703.	3.4	50
128	Radical prostatectomy: value of prostate MRI in surgical planning. Abdominal Imaging, 2012, 37, 664-674.	2.0	36
129	Targeted therapies in non-muscle-invasive bladder cancer according to the signaling pathways. Urologic Oncology: Seminars and Original Investigations, 2011, 29, 4-11.	1.6	24
130	Purification and direct transformation of epithelial progenitor cells from primary human prostate. Nature Protocols, 2011, 6, 656-667.	12.0	86
131	An affinity matured minibody for PET imaging of prostate stem cell antigen (PSCA)-expressing tumors. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 1529-1538.	6.4	55
132	Human prostate sphereâ€forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. Prostate, 2010, 70, 491-501.	2.3	130
133	Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nature Medicine, 2010, 16, 1414-1420.	30.7	280
134	The epithelial-mesenchymal transition-inducing factor TWIST is an attractive target in advanced and/or metastatic bladder and prostate cancers. Urologic Oncology: Seminars and Original Investigations, 2010, 28, 473-479.	1.6	100
135	LEF1 in Androgen-Independent Prostate Cancer: Regulation of Androgen Receptor Expression, Prostate Cancer Growth, and Invasion. Cancer Research, 2009, 69, 3332-3338.	0.9	89
136	The expression of Twist has an impact on survival in human bladder cancer and is influenced by the smoking status. Urologic Oncology: Seminars and Original Investigations, 2009, 27, 268-276.	1.6	76
137	Deletion of PSCA increases metastasis of TRAMPâ€Induced prostate tumors without altering primary tumor formation. Prostate, 2008, 68, 139-151.	2.3	34
138	Humanized Radioiodinated Minibody For Imaging of Prostate Stem Cell Antigen–Expressing Tumors. Clinical Cancer Research, 2008, 14, 7488-7496.	7.0	63
139	Androgen Receptor and Invasion in Prostate Cancer. Cancer Research, 2008, 68, 1128-1135.	0.9	102
140	Engineered humanized diabodies for microPET imaging of prostate stem cell antigen-expressing tumors. Protein Engineering, Design and Selection, 2008, 22, 209-216.	2.1	38
141	What factors affect the PSA relapse-free survival times in patients treated with permanent seed brachytherapy?. Nature Reviews Urology, 2007, 4, 650-651.	1.4	0
142	A Novel Dual-targeted Lentiviral Vector Leads to Specific Transduction of Prostate Cancer Bone Metastases In Vivo After Systemic Administration. Molecular Therapy, 2007, 15, 1973-1981.	8.2	54
143	Quality of life after surgery, external beam irradiation, or brachytherapy for earlyâ€stage prostate cancer. Cancer, 2007, 109, 2239-2247.	4.1	236
144	Improvements in prostate brachytherapy dosimetry due to seed stranding. Brachytherapy, 2007, 6, 44-48.	0.5	21

#	Article	IF	CITATIONS
145	Gene expression profiling in R-flurbiprofen-treated prostate cancer: R-Flurbiprofen regulates prostate stem cell antigen through activation of AKT kinase. Biochemical Pharmacology, 2006, 72, 1257-1267.	4.4	12
146	What are the operating characteristics of PSA screening for prostate cancer?. Nature Reviews Urology, 2006, 3, 74-75.	1.4	0
147	Prostate Stem Cell Antigen Is a Putative Target for Immunotherapy in Pancreatic Cancer. Pancreas, 2005, 31, 119-125.	1.1	81
148	Reg IV: A Promising Marker of Hormone Refractory Metastatic Prostate Cancer. Clinical Cancer Research, 2005, 11, 2237-2243.	7.0	49
149	Anti–Prostate Stem Cell Antigen Monoclonal Antibody 1G8 Induces Cell Death In vitro and Inhibits Tumor Growth In vivo via a Fc-Independent Mechanism. Cancer Research, 2005, 65, 9495-9500.	0.9	82
150	Prostate Stem Cell Antigen Is Overexpressed in Prostate Cancer Metastases. Clinical Cancer Research, 2005, 11, 2591-2596.	7.0	195
151	Antibody-Based Profiling of the Phosphoinositide 3-Kinase Pathway in Clinical Prostate Cancer. Clinical Cancer Research, 2004, 10, 8351-8356.	7.0	60
152	Genetic alterations in prostate cancer. Current Prostate Reports, 2004, 2, 51-59.	0.1	0
153	Genetic alterations in prostate cancer. Current Urology Reports, 2004, 5, 157-165.	2.2	5
154	Trefoil factor 3 is overexpressed in human prostate cancer. Prostate, 2004, 61, 209-214.	2.3	53
155	Prostate Stem Cell Antigen Expression is Associated With Gleason Score, Seminal Vesicle Invasion and Capsular Invasion in Prostate Cancer. Journal of Urology, 2004, 171, 1117-1121.	0.4	110
156	Molecular Markers and Prostate Cancer Prognosis. Clinical Prostate Cancer, 2004, 3, 157-164.	2.1	20
157	860: Prostate Stem Cell Antigen (PSCA) Expression is Associated with Gleason Score, Seminal Vesicle Invasion, and Capsular Invasion in Prostate Cancer. Journal of Urology, 2004, 171, 227-228.	0.4	0
158	Polarity of prostate specific membrane antigen, prostate stem cell antigen, and prostate specific antigen in prostate tissue and in a cultured epithelial cell line. Prostate, 2003, 55, 9-19.	2.3	23
159	Preoperative p27 Status is an Independent Predictor of Prostate Specific Antigen Failure Following Radical Prostatectomy. Journal of Urology, 2003, 169, 1325-1330.	0.4	51
160	Predicting biochemical recurrence after radical prostatectomy for patients with organ-confined disease using p27 expression. Urology, 2003, 61, 1187-1192.	1.0	17
161	Growth, regeneration, and tumorigenesis of the prostate activates the PSCA promoter. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 401-406.	7.1	56
162	Identification of an Androgen-Dependent Enhancer within the Prostate Stem Cell Antigen Gene. Molecular Endocrinology, 2002, 16, 2323-2337.	3.7	54

#	Article	IF	CITATIONS
163	Role of prostate stem cell antigen in prostate cancer research. Current Opinion in Urology, 2002, 12, 401-406.	1.8	23
164	Monoclonal Antibody Therapy for Genitourinary Oncology: Promise for the Future. Journal of Urology, 2002, 168, 2615-2623.	0.4	11
165	Prostate stem cell antigen is a marker of late intermediate prostate epithelial cells. Molecular Cancer Research, 2002, 1, 113-21.	3.4	107
166	Coamplification of prostate stem cell antigen (PSCA) andMYC in locally advanced prostate cancer. , 2000, 27, 95-103.		97
167	Target antigens for prostate cancer immunotherapy. Cancer and Metastasis Reviews, 1999, 18, 437-449.	5.9	28
168	Caveolin expression is decreased following androgen deprivation in human prostate cancer cell lines. , 1999, 40, 269-273.		45
169	CLINICAL AND GENETIC CHARACTERIZATION OF PHEOCHROMOCYTOMA IN VON HIPPEL-LINDAU FAMILIES: COMPARISON WITH SPORADIC PHEOCHROMOCYTOMA GIVES INSIGHT INTO NATURAL HISTORY OF PHEOCHROMOCYTOMA. Journal of Urology, 1999, 162, 659-664.	0.4	233
170	Stem cell genes in androgen-independent prostate cancer. , 1998, 17, 391-399.		50
171	LOW P27 EXPRESSION PREDICTS POOR DISEASE-FREE SURVIVAL IN PATIENTS WITH PROSTATE CANCER. Journal of Urology, 1998, 159, 941-945.	0.4	278
172	Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nature Medicine, 1997, 3, 402-408.	30.7	356