List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6205705/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Non-Invasive Imaging of Cardiac Activation and Recovery. Annals of Biomedical Engineering, 2009, 37, 1739-1756.                                                                                                                         | 1.3 | 141       |
| 2  | Validation and Opportunities of Electrocardiographic Imaging: From Technical Achievements to Clinical Applications. Frontiers in Physiology, 2018, 9, 1305.                                                                             | 1.3 | 89        |
| 3  | Evaluating strict and conventional left bundle branch block criteria using electrocardiographic simulations. Europace, 2013, 15, 1816-1821.                                                                                             | 0.7 | 61        |
| 4  | Experimental Data and Geometric Analysis Repository—EDGAR. Journal of Electrocardiology, 2015, 48,<br>975-981.                                                                                                                          | 0.4 | 58        |
| 5  | Early repolarization in mice causes overestimation of ventricular activation time by the QRS duration.<br>Cardiovascular Research, 2013, 97, 182-191.                                                                                   | 1.8 | 49        |
| 6  | Quantitative localization of premature ventricular contractions using myocardial activation ECGI from the standard 12-lead electrocardiogram. Journal of Electrocardiology, 2013, 46, 574-579.                                          | 0.4 | 45        |
| 7  | Mechanoelectrical coupling enhances initiation and affects perpetuation of atrial fibrillation during acute atrial dilation. Heart Rhythm, 2011, 8, 429-436.                                                                            | 0.3 | 43        |
| 8  | Application of the fastest route algorithm in the interactive simulation of the effect of local ischemia on the ECG. Medical and Biological Engineering and Computing, 2009, 47, 11-20.                                                 | 1.6 | 42        |
| 9  | A toolkit for forward/inverse problems in electrocardiography within the SCIRun problem solving environment. , 2011, 2011, 267-70.                                                                                                      |     | 41        |
| 10 | Initial validation of a novel ECGI system for localization of premature ventricular contractions and ventricular tachycardia in structurally normal and abnormal hearts. Journal of Electrocardiology, 2018, 51, 801-808.               | 0.4 | 33        |
| 11 | Influence of Modeling Errors on the Initial Estimate for Nonlinear Myocardial Activation Times<br>Imaging Calculated With Fastest Route Algorithm. IEEE Transactions on Biomedical Engineering, 2016,<br>63, 2576-2584.                 | 2.5 | 31        |
| 12 | Changes in QRS Area and QRS Duration After Cardiac Resynchronization Therapy Predict Cardiac<br>Mortality, Heart Failure Hospitalizations, and Ventricular Arrhythmias. Journal of the American Heart<br>Association, 2019, 8, e013539. | 1.6 | 30        |
| 13 | Experimental Validation of Noninvasive Epicardial and Endocardial Activation Imaging. Circulation:<br>Arrhythmia and Electrophysiology, 2016, 9, e004104.                                                                               | 2.1 | 25        |
| 14 | Atrial Excitation Assuming Uniform Propagation. Journal of Cardiovascular Electrophysiology, 2003, 14, S166-S171.                                                                                                                       | 0.8 | 24        |
| 15 | Identifying Model Inaccuracies and Solution Uncertainties in Noninvasive Activation-Based Imaging of<br>Cardiac Excitation Using Convex Relaxation. IEEE Transactions on Medical Imaging, 2014, 33, 902-912.                            | 5.4 | 23        |
| 16 | Big Data and Artificial Intelligence: Opportunities and Threats in Electrophysiology. Arrhythmia and<br>Electrophysiology Review, 2020, 9, 146-154.                                                                                     | 1.3 | 22        |
| 17 | Volume conductor effects involved in the genesis of the P wave. Europace, 2005, 7, S30-S38.                                                                                                                                             | 0.7 | 21        |
| 18 | Potential applications of the new ECGSIM. Journal of Electrocardiology, 2011, 44, 577-583.                                                                                                                                              | 0.4 | 16        |

2

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The relation of 12 lead ECG to the cardiac anatomy: The normal CineECG. Journal of Electrocardiology, 2021, 69, 67-74.                                                                                                                | 0.4 | 16        |
| 20 | Improving sensing and detection performance in subcutaneous monitors. Journal of Electrocardiology, 2009, 42, 580-583.                                                                                                                | 0.4 | 15        |
| 21 | Spatiotemporal estimation of activation times of fractionated ECGs on complex heart surfaces. , 2011, 2011, 5884-7.                                                                                                                   |     | 15        |
| 22 | A new anatomical view on the vector cardiogram: The mean temporal-spatial isochrones. Journal of Electrocardiology, 2017, 50, 732-738.                                                                                                | 0.4 | 15        |
| 23 | ECG Adapted Fastest Route Algorithm to Localize the Ectopic Excitation Origin in CRT Patients.<br>Frontiers in Physiology, 2019, 10, 183.                                                                                             | 1.3 | 15        |
| 24 | Novel CineECG Derived From Standard 12-Lead ECG Enables Right Ventricle Outflow Tract Localization<br>of Electrical Substrate in Patients With Brugada Syndrome. Circulation: Arrhythmia and<br>Electrophysiology, 2020, 13, e008524. | 2.1 | 14        |
| 25 | Development of new anatomy reconstruction software to localize cardiac isochrones to the cardiac surface from the 12 lead ECG. Journal of Electrocardiology, 2015, 48, 959-965.                                                       | 0.4 | 13        |
| 26 | Sensitivity of CIPS-computed PVC location to measurement errors in ECG electrode position: the need for the 3D Camera. Journal of Electrocardiology, 2014, 47, 788-793.                                                               | 0.4 | 12        |
| 27 | Torso geometry reconstruction and body surface electrode localization using three-dimensional photography. Journal of Electrocardiology, 2018, 51, 60-67.                                                                             | 0.4 | 12        |
| 28 | Longâ€Term Outcomes of Cardiac Resynchronization Therapy Using Apical Versus Nonapical Left<br>Ventricular Pacing. Journal of the American Heart Association, 2018, 7, e008508.                                                       | 1.6 | 12        |
| 29 | OUP accepted manuscript. Europace, 2016, 18, iv16-iv22.                                                                                                                                                                               | 0.7 | 9         |
| 30 | Using Lempel-Ziv complexity as effective classification tool of the sleep-related breathing disorders.<br>Computer Methods and Programs in Biomedicine, 2019, 182, 105052.                                                            | 2.6 | 9         |
| 31 | Novel <i>CineECG</i> enables anatomical 3D localization and classification of bundle branch blocks.<br>Europace, 2021, 23, i80-i87.                                                                                                   | 0.7 | 9         |
| 32 | Uncertainty Quantification of the Effects of Segmentation Variability in ECGI. Lecture Notes in Computer Science, 2021, 12738, 515-522.                                                                                               | 1.0 | 9         |
| 33 | Statistical Variations of Heart Orientation in Healthy Adults. , 0, , .                                                                                                                                                               |     | 9         |
| 34 | Analysing the potential of Reveal® for monitoring cardiac potentials. Europace, 2007, 9, vi119-vi123.                                                                                                                                 | 0.7 | 8         |
| 35 | Effect of Segmentation Variation on ECG Imaging. , 2018, 45, .                                                                                                                                                                        |     | 8         |
| 36 | Effect of QRS area reduction and myocardial scar on the hemodynamic response to cardiac resynchronization therapy. Heart Rhythm, 2020, 17, 2046-2055.                                                                                 | 0.3 | 8         |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Electrocardiographic imaging-based recognition of possible induced bundle branch blocks during transcatheter aortic valve implantations. Europace, 2014, 16, 750-757.                                                          | 0.7 | 7         |
| 38 | Comparing Non-invasive Inverse Electrocardiography With Invasive Endocardial and Epicardial<br>Electroanatomical Mapping During Sinus Rhythm. Frontiers in Physiology, 2021, 12, 730736.                                       | 1.3 | 7         |
| 39 | New Additions to the Toolkit for Forward/Inverse Problems in Electrocardiography within the SCIRun<br>Problem Solving Environment. Computing in Cardiology, 2014, 2014, 213-216.                                               | 0.4 | 7         |
| 40 | The Consortium for Electrocardiographic Imaging. Computing in Cardiology, 2016, 43, 325-328.                                                                                                                                   | 0.4 | 7         |
| 41 | Clinical Utility of Body Surface Potential Mapping in CRT Patients. Arrhythmia and Electrophysiology<br>Review, 2021, 10, 113-119.                                                                                             | 1.3 | 6         |
| 42 | The Consortium on Electrocardiographic Imaging. , 0, , .                                                                                                                                                                       |     | 6         |
| 43 | CineECG: A novel method to image the average activation sequence in the heart from the 12-lead ECG.<br>Computers in Biology and Medicine, 2022, 141, 105128.                                                                   | 3.9 | 6         |
| 44 | Modeling the His-Purkinje Effect in Non-invasive Estimation of Endocardial and Epicardial Ventricular<br>Activation. Annals of Biomedical Engineering, 2022, 50, 343-359.                                                      | 1.3 | 6         |
| 45 | Analysis of the criteria of activation-based inverse electrocardiography using convex optimization. , 2011, 2011, 3913-6.                                                                                                      |     | 5         |
| 46 | Feasibility study of a 3D camera to reduce electrode repositioning errors during longitudinal ECG acquisition. Journal of Electrocardiology, 2021, 66, 69-76.                                                                  | 0.4 | 4         |
| 47 | A convex relaxation framework for initialization of activation-based inverse electrocardiography. , 2011, , .                                                                                                                  |     | 3         |
| 48 | Evaluating the human-computer interaction of â€~ECCSim': A virtual simulator to aid learning in electrocardiology. , 2015, , .                                                                                                 |     | 3         |
| 49 | Man vs machine: Performance of manual vs automated electrocardiogram analysis for predicting the<br>chamber of origin of idiopathic ventricular arrhythmia. Journal of Cardiovascular<br>Electrophysiology, 2020, 31, 410-416. | 0.8 | 3         |
| 50 | Minimally invasive robotically assisted surgical resection of left atrial endocardial papillary fibroelastomas. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 3247-3249.                                          | 0.4 | 2         |
| 51 | Computer simulations to investigate the causes of T-wave notching. Journal of Electrocardiology, 2015, 48, 927-932.                                                                                                            | 0.4 | 2         |
| 52 | CineECG provides a novel anatomical view on the normal atrial P-wave. European Heart Journal Digital Health, 2022, 3, 169-180.                                                                                                 | 0.7 | 2         |
| 53 | Quantitative comparison of two cardiac electrical imaging methods to localize pacing sites. , 2015, , .                                                                                                                        |     | 1         |
|    |                                                                                                                                                                                                                                |     |           |

54 Generation of combined-modality tetrahedral meshes. , 2015, 2015, 953-956.

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | 177-05: The CIPS-Vector: a New 12 Lead ECG Based Method to Localize PVCs to the Cardiac Anatomy.<br>Europace, 2016, 18, i182-i182.                                               | 0.7 | 1         |
| 56 | Automatic Registration of 3D Camera Recording to Model for Leads Localization. , 0, , .                                                                                          |     | 1         |
| 57 | Shape Analysis of Segmentation Variability. , 0, , .                                                                                                                             |     | 1         |
| 58 | The electro-anatomical pathway for normal and abnormal ECGs in COVID patients. , 0, , .                                                                                          |     | 1         |
| 59 | THE RELATIONSHIP BETWEEN THE PVC ORIGIN LOCATION AND THE MEAN DIRECTION OF ACTIVATION TO THE ANATOMICAL LOCATION. Journal of the American College of Cardiology, 2019, 73, 372.  | 1.2 | Ο         |
| 60 | The role of machine learning in the early detection of cardiovascular disease in a community setting.<br>European Heart Journal Digital Health, 2021, 2, 135-136.                | 0.7 | 0         |
| 61 | Adaptive Cardiac Resynchronization Therapy Effect on Electrical Dyssynchrony (aCRT-ELSYNC): A randomized controlled trial. Heart Rhythm O2, 2021, 2, 374-381.                    | 0.6 | Ο         |
| 62 | B-PO04-183 ADAPTIVE CARDIAC RESYNCHRONIZATION THERAPY EFFECT ON ELECTRICAL DYSSYNCHRONY-A RANDOMIZED CONTROLLED TRIAL. Heart Rhythm, 2021, 18, S353.                             | 0.3 | 0         |
| 63 | A generic model of overall heart geometry for model based studies of electrical, mechanical, and ion-kinetics aspects of the heart. IFMBE Proceedings, 2009, , 2548-2551.        | 0.2 | Ο         |
| 64 | ECG Imaging of Focal Atrial Excitation: Evaluation in a Realistic Simulation Setup. , 0, , .                                                                                     |     | 0         |
| 65 | Mean Temporal Spatial Isochrones as Marker for Activation Delay in Patients with Arrhythmogenic Cardiomyopathy. , 0, , .                                                         |     | Ο         |
| 66 | Premature Ventricular Conduction Detection and Localization From the ECG Using a Neural Network. , 0, , .                                                                        |     | 0         |
| 67 | A Unified Pipeline for ECG Imaging Testing. , 2019, 46, .                                                                                                                        |     | 0         |
| 68 | Disease-Specific Electrocardiographic Lead Positioning for Early Detection of Arrhythmogenic Right<br>Ventricular Cardiomyopathy. , 0, , .                                       |     | 0         |
| 69 | Comparison of two equivalent dipole layer based inverse electrocardiography techniques for the non-invasive estimation of His-Purkinje mediated ventricular activation. , 0, , . |     | 0         |
| 70 | A Cardiac Shape Model for Segmentation Uncertainty Quantification. , 2021, 48, .                                                                                                 |     | 0         |
| 71 | Uncovering Electromechanical Uncoupling in Subclinical Pathogenic Mutation Carriers and Arrhythmogenic Cardiomyopathy Patients. , 2021, , .                                      |     | 0         |
| 72 | Relationship Between Cardiac Isochrones and its Mean Anatomical Position in the Heart: The CineECG. , 2021, , .                                                                  |     | 0         |