De-Chang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6205529/publications.pdf

Version: 2024-02-01

8	346	8	8
papers	citations	h-index	g-index
8	8	8	511 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Investigations on the dissolved organic matter leached from oil-contaminated soils by using pyrolysis remediation method. Science of the Total Environment, 2021, 776, 145921.	8.0	11
2	Oneâ€Step Thermochemical Conversion of Biomass Waste into Superhydrophobic Carbon Material by Catalytic Pyrolysis. Global Challenges, 2020, 4, 1900085.	3.6	10
3	Highly Dispersed Manganese Based Mn/N–C/Al ₂ O ₃ Catalyst for Selective Oxidation of the C–H Bond of Ethylbenzene. Industrial & Description of the C–H Bond of Ethylbenzene. Industrial & Description of Chemistry Research, 2019, 58, 3969-3977.	3.7	22
4	Highly stable and selective measurement of Fe3+ ions under environmentally relevant conditions via an excitation-based multiwavelength method using N, S-doped carbon dots. Environmental Research, 2019, 170, 443-451.	7.5	12
5	Remediation of Petroleum-Contaminated Soil and Simultaneous Recovery of Oil by Fast Pyrolysis. Environmental Science & Environ	10.0	87
6	The effects of environmental conditions on the enrichment of antibiotics on microplastics in simulated natural water column. Environmental Research, 2018, 166, 377-383.	7.5	82
7	The thermochemical conversion of non-lignocellulosic biomass to form biochar: A review on characterizations and mechanism elucidation. Bioresource Technology, 2017, 246, 57-68.	9.6	106
8	Preparation of high adsorption performance and stable biochar granules by FeCl ₃ -catalyzed fast pyrolysis. RSC Advances, 2016, 6, 12226-12234.	3.6	16