
Tijl Grootswagers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6205383/publications.pdf Version: 2024-02-01

THE CROOTSWACERS

#	Article	IF	CITATIONS
1	Human EEG recordings for 1,854 concepts presented in rapid serial visual presentation streams. Scientific Data, 2022, 9, 3.	5.3	18
2	An Empirically Driven Guide on Using Bayes Factors for M/EEG Decoding. , 2022, 2022, .		6
3	The time-course of feature-based attention effects dissociated from temporal expectation and target-related processes. Scientific Reports, 2022, 12, 6968.	3.3	15
4	Unique contributions of perceptual and conceptual humanness to object representations in the human brain. NeuroImage, 2022, 257, 119350.	4.2	4
5	Are you for real? Decoding realistic Al-generated faces from neural activity. Vision Research, 2022, 199, 108079.	1.4	8
6	Temporal dissociation of neural activity underlying synesthetic and perceptual colors. Proceedings of the United States of America, 2021, 118, .	7.1	6
7	Overlapping neural representations for the position of visible and imagined objects. Neurons, Behavior, Data Analysis, and Theory, 2021, 4, .	1.2	5
8	The neural dynamics underlying prioritisation of task-relevant information. Neurons, Behavior, Data Analysis, and Theory, 2021, 5, .	1.2	13
9	Overfitting the Literature to One Set of Stimuli and Data. Frontiers in Human Neuroscience, 2021, 15, 682661.	2.0	14
10	Centering inclusivity in the design of online conferences—An OHBM–Open Science perspective. GigaScience, 2021, 10, .	6.4	14
11	Neural signatures of dynamic emotion constructs in the human brain. Neuropsychologia, 2020, 145, 106535.	1.6	25
12	Unconstrained multivariate EEG decoding can help detect lexical-semantic processing in individual children. Scientific Reports, 2020, 10, 10849.	3.3	10
13	The Influence of Object-Color Knowledge on Emerging Object Representations in the Brain. Journal of Neuroscience, 2020, 40, 6779-6789.	3.6	24
14	A humanness dimension to visual object coding in the brain. NeuroImage, 2020, 221, 117139.	4.2	18
15	A primer on running human behavioural experiments online. Behavior Research Methods, 2020, 52, 2283-2286.	4.0	48
16	Toward an Individualized Neural Assessment of Receptive Language in Children. Journal of Speech, Language, and Hearing Research, 2020, 63, 2361-2385.	1.6	6
17	The temporal dynamics of information integration within and across the hemispheres. Journal of Vision, 2020, 20, 1016.	0.3	0
18	Seeing versus knowing: The temporal dynamics of real and implied colour processing in the human brain. Neurolmage, 2019, 200, 373-381.	4.2	27

TIJL GROOTSWAGERS

#	Article	IF	CITATIONS
19	Untangling featural and conceptual object representations. NeuroImage, 2019, 202, 116083.	4.2	34
20	The influence of image masking on object representations during rapid serial visual presentation. NeuroImage, 2019, 197, 224-231.	4.2	44
21	In search of consciousness: Examining the temporal dynamics of conscious visual perception using MEG time-series data. Neuropsychologia, 2019, 129, 310-317.	1.6	13
22	Decoding Images in the Mind's Eye: The Temporal Dynamics of Visual Imagery. Vision (Switzerland), 2019, 3, 53.	1.2	13
23	The representational dynamics of visual objects in rapid serial visual processing streams. NeuroImage, 2019, 188, 668-679.	4.2	64
24	Decoding Digits and Dice with Magnetoencephalography: Evidence for a Shared Representation of Magnitude. Journal of Cognitive Neuroscience, 2018, 30, 999-1010.	2.3	28
25	Finding decodable information that can be read out in behaviour. NeuroImage, 2018, 179, 252-262.	4.2	60
26	Tomatoes are red, cucumbers are green: Decoding the temporal dynamics of object-colour knowledge using Magnetoencephalography. Journal of Vision, 2018, 18, 861.	0.3	0
27	Asymmetric Compression of Representational Space for Object Animacy Categorization under Degraded Viewing Conditions. Journal of Cognitive Neuroscience, 2017, 29, 1995-2010.	2.3	21
28	Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data. Journal of Cognitive Neuroscience, 2017, 29, 677-697.	2.3	490
29	Neurogaming Technology Meets Neuroscience Education: A Cost-Effective, Scalable, and Highly Portable Undergraduate Teaching Laboratory for Neuroscience. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2017, 15, A104-A109.	0.0	1
30	Perceptual similarity of visual patterns predicts dynamic neural activation patterns measured with MEG. NeuroImage, 2016, 132, 59-70.	4.2	85
31	Dichotomy Versus Continuum: Evidence for a More Complex Agency Model of Visual Object Categorisation. Journal of Vision, 2016, 16, 252.	0.3	0
32	Decoding the emerging representation of degraded visual objects in the human brain Journal of Vision, 2015, 15, 1087.	0.3	2