List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6205051/publications.pdf Version: 2024-02-01



MELISSA & HINES

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Photochemical Fluorination of TiO <sub>2</sub> (110) Produces an Atomically Thin Passivating Layer.<br>Journal of Physical Chemistry C, 2022, 126, 4899-4906.                                                                         | 3.1  | 1         |
| 2  | Single-Crystal Alkali Antimonide Photocathodes: High Efficiency in the Ultrathin Limit. Physical<br>Review Letters, 2022, 128, 114801.                                                                                                | 7.8  | 20        |
| 3  | Reduction of surface roughness emittance of Cs3Sb photocathodes grown via codeposition on single crystal substrates. Applied Physics Letters, 2021, 118, .                                                                            | 3.3  | 11        |
| 4  | The Intricate Love Affairs between MoS <sub>2</sub> and Metallic Substrates. Advanced Materials<br>Interfaces, 2020, 7, 2001324.                                                                                                      | 3.7  | 15        |
| 5  | The effects of oxygen-induced phase segregation on the interfacial electronic structure and quantum efficiency of Cs3Sb photocathodes. Journal of Chemical Physics, 2020, 153, 144705.                                                | 3.0  | 11        |
| 6  | Breaking π–π Interactions in Carboxylic Acid Monolayers on Rutile TiO <sub>2</sub> (110) Leads to<br>Unexpected Long-Range Ordering. Journal of Physical Chemistry C, 2019, 123, 8836-8842.                                           | 3.1  | 5         |
| 7  | Atomic-Scale Understanding of Catalyst Activation: Carboxylic Acid Solutions, but Not the Acid Itself,<br>Increase the Reactivity of Anatase (001) Faceted Nanocatalysts. Journal of Physical Chemistry C, 2018,<br>122, 4307-4314.   | 3.1  | 14        |
| 8  | Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide<br>Monolayers. ACS Nano, 2018, 12, 10463-10472.                                                                                            | 14.6 | 203       |
| 9  | High-affinity adsorption leads to molecularly ordered interfaces on TiO <sub>2</sub> in air and solution. Science, 2018, 361, 786-789.                                                                                                | 12.6 | 190       |
| 10 | Half-flat vs. atomically flat: Alkyl monolayers on morphologically controlled Si(100) and Si(111) have very similar structure, density, and chemical stability. Journal of Chemical Physics, 2017, 146, 052804.                       | 3.0  | 5         |
| 11 | Solution Deposition of Phenylphosphinic Acid Leads to Highly Ordered, Covalently Bound Monolayers<br>on TiO <sub>2</sub> (110) Without Annealing. Journal of Physical Chemistry C, 2017, 121, 14213-14221.                            | 3.1  | 14        |
| 12 | Cartesian Decomposition of Infrared Spectra Reveals the Structure of Solution-Deposited,<br>Self-Assembled Benzoate and Alkanoate Monolayers on Rutile (110). Journal of Physical Chemistry C,<br>2016, 120, 24866-24876.             | 3.1  | 4         |
| 13 | Nanoscale Solvation Leads to Spontaneous Formation of a Bicarbonate Monolayer on Rutile (110)<br>under Ambient Conditions: Implications for CO <sub>2</sub> Photoreduction. Journal of Physical<br>Chemistry C, 2016, 120, 9326-9333. | 3.1  | 36        |
| 14 | Solution Deposition of Self-Assembled Benzoate Monolayers on Rutile (110): Effect of π–π Interactions<br>on Monolayer Structure. Journal of Physical Chemistry C, 2016, 120, 11581-11589.                                             | 3.1  | 12        |
| 15 | Frustrated Etching during H/Si(111) Methoxylation Produces Fissured Fluorinated Surfaces, Whereas<br>Direct Fluorination Preserves the Atomically Flat Morphology. Journal of Physical Chemistry C, 2015,<br>119, 26029-26037.        | 3.1  | 6         |
| 16 | Finding Needles in Haystacks: Scanning Tunneling Microscopy Reveals the Complex Reactivity of Si(100)<br>Surfaces. Accounts of Chemical Research, 2015, 48, 2159-2166.                                                                | 15.6 | 8         |
| 17 | A Blackboard for the 21st Century: An Inexpensive Light Board Projection System for Classroom Use.<br>Journal of Chemical Education, 2015, 92, 1754-1756.                                                                             | 2.3  | 17        |
| 18 | Molecular Mechanism of Etching-Induced Faceting on Si(100): Micromasking Is Not a Prerequisite for Pyramidal Texturing. Journal of Physical Chemistry C, 2015, 119, 14490-14498.                                                      | 3.1  | 8         |

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Lowering the density of electronic defects on organic-functionalized Si(100) surfaces. Applied Physics<br>Letters, 2014, 104, .                                                                                  | 3.3  | 16        |
| 20 | Rutile Surface Reactivity Provides Insight into the Structure-Directing Role of Peroxide in<br>TiO <sub>2</sub> Polymorph Control. Journal of Physical Chemistry C, 2014, 118, 27343-27352.                      | 3.1  | 15        |
| 21 | Effect of Organic SAMs on the Evolution of Strength of Silicon Nanostructures. Conference<br>Proceedings of the Society for Experimental Mechanics, 2014, , 59-64.                                               | 0.5  | 0         |
| 22 | Chemical Control of Surfaces: From Fundamental Understanding to Practical Application. Solid State Phenomena, 2012, 195, 65-70.                                                                                  | 0.3  | 0         |
| 23 | Si(100) Etching in Aqueous Fluoride Solutions: Parallel Etching Reactions Lead to pH-Dependent<br>Nanohillock Formation or Atomically Flat Surfaces. Journal of Physical Chemistry C, 2012, 116,<br>21499-21507. | 3.1  | 12        |
| 24 | Self-Propagating Reaction Produces Near-Ideal Functionalization of Si(100) and Flat Surfaces. Journal of Physical Chemistry C, 2012, 116, 18920-18929.                                                           | 3.1  | 26        |
| 25 | Following Chemical Charge Trapping in Pentacene Thin Films by Selective Impurity Doping and<br>Wavelengthâ€Resolved Electric Force Microscopy. Advanced Functional Materials, 2012, 22, 5096-5106.               | 14.9 | 10        |
| 26 | Effect of surface chemistry on the quality factors of micromechanical resonators. , 2011, , .                                                                                                                    |      | 1         |
| 27 | The same etchant produces both near-atomically flat and microfaceted Si(100) surfaces: The effects of gas evolution on etch morphology. Journal of Applied Physics, 2010, 107, .                                 | 2.5  | 17        |
| 28 | Study of the resonant frequencies of silicon microcantilevers coated with vanadium dioxide films during the insulator-to-metal transition. Journal of Applied Physics, 2010, 107, 053528.                        | 2.5  | 18        |
| 29 | Aqueous Etching Produces Si(100) Surfaces of Near-Atomic Flatness: Strain Minimization Does Not<br>Predict Surface Morphology. Journal of Physical Chemistry C, 2010, 114, 423-428.                              | 3.1  | 48        |
| 30 | Kinetic Monte Carlo simulations of anisotropic Si(100) etching: Modeling the chemical origins of characteristic etch morphologies. Journal of Chemical Physics, 2010, 133, 044710.                               | 3.0  | 17        |
| 31 | Effect of Surface Chemistry on Mechanical Energy Dissipation:  Silicon Oxidation Does Not Inherently<br>Decrease the Quality Factor. Journal of Physical Chemistry C, 2008, 112, 1473-1478.                      | 3.1  | 6         |
| 32 | Extracting maximum information from polarized surface vibrational spectra: Application to etched,<br>H-terminated Si(110) surfaces. Journal of Chemical Physics, 2008, 128, 144711.                              | 3.0  | 20        |
| 33 | Understanding the Effects of Surface Chemistry onQ:Â Mechanical Energy Dissipation in<br>Alkyl-Terminated (C1â^'C18) Micromechanical Silicon Resonators. Journal of Physical Chemistry B, 2007,<br>111, 88-94.   | 2.6  | 22        |
| 34 | Effect of surface morphology on the fracture strength of silicon nanobeams. Applied Physics Letters, 2006, 89, 091901.                                                                                           | 3.3  | 32        |
| 35 | Production of Highly Homogeneous Si(100) Surfaces by H2O Etching:Â Surface Morphology and the Role of Strain. Journal of the American Chemical Society, 2006, 128, 11455-11462.                                  | 13.7 | 30        |
| 36 | Methyl monolayers improve the fracture strength and durability of silicon nanobeams. Applied Physics Letters, 2006, 89, 231905.                                                                                  | 3.3  | 28        |

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Methyl monolayers suppress mechanical energy dissipation in micromechanical silicon resonators.<br>Applied Physics Letters, 2004, 85, 5736-5738.                                     | 3.3  | 19        |
| 38 | Controlling energy dissipation and stability of micromechanical silicon resonators with self-assembled monolayers. Applied Physics Letters, 2004, 84, 1765-1767.                     | 3.3  | 23        |
| 39 | Improved algorithm for the suppression of interference fringe in absorption spectroscopy. Review of Scientific Instruments, 2004, 75, 4547-4553.                                     | 1.3  | 27        |
| 40 | Effects of Diffusional Processes on Crystal Etching:  Kinematic Theory Extended to Two Dimensions.<br>Journal of Physical Chemistry B, 2004, 108, 6062-6071.                         | 2.6  | 14        |
| 41 | Etchant Anisotropy Controls the Step Bunching Instability in KOH Etching of Silicon. Physical Review<br>Letters, 2004, 93, 166102.                                                   | 7.8  | 57        |
| 42 | Machining with chemistry: Controlling nanoscale surface structure with anisotropic etching.<br>Nanostructure Science and Technology, 2004, , 249-280.                                | 0.1  | 0         |
| 43 | Understanding the pH dependence of silicon etching: the importance of dissolved oxygen in buffered<br>HF etchants. Surface Science, 2003, 541, 252-261.                              | 1.9  | 42        |
| 44 | Surface Chemical Control of Mechanical Energy Losses in Micromachined Silicon Structures. Journal of Physical Chemistry B, 2003, 107, 14270-14277.                                   | 2.6  | 47        |
| 45 | INSEARCH OFPERFECTION: Understanding the Highly Defect-Selective Chemistry of Anisotropic Etching.<br>Annual Review of Physical Chemistry, 2003, 54, 29-56.                          | 10.8 | 105       |
| 46 | Measuring the Site-Specific Reactivity of Impurities:Â The Pronounced Effect of Dissolved Oxygen on<br>Silicon Etchingâ€. Journal of Physical Chemistry B, 2002, 106, 8258-8264.     | 2.6  | 34        |
| 47 | Orientation-Resolved Chemical Kinetics:  Using Microfabrication to Unravel the Complicated<br>Chemistry of KOH/Si Etching. Journal of Physical Chemistry B, 2002, 106, 1557-1569.    | 2.6  | 60        |
| 48 | Nanofabrication at Biologically Important Length Scale: Etching of Dislocation Array in Twist-bonded<br>Bicrystals. Materials Research Society Symposia Proceedings, 2001, 705, 981. | 0.1  | 0         |
| 49 | Fabrication of nanoperiodic surface structures by controlled etching of dislocations in bicrystals.<br>Applied Physics Letters, 2001, 78, 2205-2207.                                 | 3.3  | 41        |
| 50 | The picture tells the story: Using surface morphology to probe chemical etching reactions.<br>International Reviews in Physical Chemistry, 2001, 20, 645-672.                        | 2.3  | 40        |
| 51 | Morphological Aspects of Silicon Oxidation in Aqueous Solutions. Springer Series in Materials Science, 2001, , 13-34.                                                                | 0.6  | 1         |
| 52 | Macroscopic etch anisotropies and microscopic reaction mechanisms: a micromachined structure for the rapid assay of etchant anisotropy. Surface Science, 2000, 460, 21-38.           | 1.9  | 106       |
| 53 | The formation of etch hillocks during step-flow etching of Si(111). Chemical Physics Letters, 1999, 302, 85-90.                                                                      | 2.6  | 24        |
| 54 | The correlation between surface morphology and spectral lineshape: a re-examination of the H–Si(111) stretch vibration. Surface Science, 1999, 430, 67-79.                           | 1.9  | 19        |

| #  | Article                                                                                                                                                                                                                                                     | IF         | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 55 | An atomistic mechanism for the production of two- and three-dimensional etch hillocks on Si(111) surfaces. Journal of Chemical Physics, 1999, 111, 6970-6981.                                                                                               | 3.0        | 53        |
| 56 | The site-specific reactivity of isopropanol in aqueous silicon etching: Controlling morphology with surface chemistry. Journal of Chemical Physics, 1999, 111, 9125-9128.                                                                                   | 3.0        | 35        |
| 57 | Extracting site-specific reaction rates from steady state surface morphologies: Kinetic Monte Carlo simulations of aqueous Si(111) etching. Journal of Chemical Physics, 1998, 108, 5542-5553.                                                              | 3.0        | 81        |
| 58 | Effects of Dynamic Step-Step Repulsion and Autocatalysis on the Morphology of Etched Si(111)<br>Surfaces. Physical Review Letters, 1998, 80, 4462-4465.                                                                                                     | 7.8        | 31        |
| 59 | Dynamic repulsion of surface steps during step flow etching: Controlling surface roughness with chemistry. Journal of Chemical Physics, 1998, 109, 5025-5035.                                                                                               | 3.0        | 23        |
| 60 | Characterization of silicon surfaces and interfaces by optical vibrational spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 1719-1727.                                                                       | 2.1        | 48        |
| 61 | Measuring the structure of etched silicon surfaces with Raman spectroscopy. Journal of Chemical Physics, 1994, 101, 8055-8072.                                                                                                                              | 3.0        | 77        |
| 62 | Looking up the down staircase: Surface Raman spectroscopy as a probe of adsorbate orientation.<br>Journal of Electron Spectroscopy and Related Phenomena, 1993, 64-65, 183-191.                                                                             | 1.7        | 23        |
| 63 | The interaction of CO with Ni(111): Rainbows and rotational trapping. Journal of Chemical Physics, 1993, 98, 9134-9147.                                                                                                                                     | 3.0        | 42        |
| 64 | Raman studies of steric hindrance and surface relaxation of stepped H-terminated silicon surfaces.<br>Physical Review Letters, 1993, 71, 2280-2283.                                                                                                         | 7.8        | 44        |
| 65 | 2+1 resonantly enhanced multiphoton ionization of CO via the E 1ΖX 1Σ+ transition: From measured signals to quantitative population distributions. Journal of Chemical Physics, 1990, 93, 8557-8564.                                                        | ion<br>3.0 | 57        |
| 66 | Effect of translational and vibrational energy on adsorption: The dynamics of molecular and<br>dissociative chemisorption. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films,<br>1987, 5, 501-507.                                     | 2.1        | 90        |
| 67 | Effect of translational energy on chemisorption: Evidence for a precursor to molecular chemisorption. Journal of Chemical Physics, 1985, 82, 2826-2827.                                                                                                     | 3.0        | 36        |
| 68 | Summary Abstract: Effect of translational energy on molecular chemisorption: Possible selective population of the precursor and molecular chemisorption states. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1985, 3, 1665-1665. | 2.1        | 1         |