Susanne J Van Veluw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6203632/publications.pdf

Version: 2024-02-01

86 papers 4,609 citations

147786 31 h-index 110368 64 g-index

87 all docs

87 docs citations

times ranked

87

6307 citing authors

#	Article	IF	Citations
1	Very Small Cerebellar Infarcts: Integration of Recent Insights into a Functional Topographic Classification. Cerebrovascular Diseases, 2013, 36, 81-87.	1.7	739
2	Cerebral amyloid angiopathy and Alzheimer disease $\hat{a} \in \text{``}$ one peptide, two pathways. Nature Reviews Neurology, 2020, 16, 30-42.	10.1	407
3	White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and opportunities. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 107-117.	3.7	250
4	Vasomotion as a Driving Force for Paravascular Clearance in the Awake Mouse Brain. Neuron, 2020, 105, 549-561.e5.	8.1	236
5	Detection, risk factors, and functional consequences of cerebral microinfarcts. Lancet Neurology, The, 2017, 16, 730-740.	10.2	225
6	Post-Stroke Cognitive Impairment and Dementia. Circulation Research, 2022, 130, 1252-1271.	4.5	188
7	Differentiating between self and others: an ALE meta-analysis of fMRI studies of self-recognition and theory of mind. Brain Imaging and Behavior, 2014, 8, 24-38.	2.1	186
8	<i>In Vivo</i> Detection of Cerebral Cortical Microinfarcts with High-Resolution 7T MRI. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 322-329.	4.3	177
9	Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study. Brain, 2016, 139, 1472-1481.	7.6	133
10	Ischemic brain injury in cerebral amyloid angiopathy. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 40-54.	4.3	111
11	Cortical microinfarcts on 3T MRI: Clinical correlates inÂmemoryâ€elinicÂpatients. Alzheimer's and Dementia, 2015, 11, 1500-1509.	0.8	109
12	Cortical cerebral microinfarcts on 3T MRI. Neurology, 2016, 87, 1583-1590.	1.1	101
13	Microbleed and microinfarct detection in amyloid angiopathy: a high-resolution MRI-histopathology study. Brain, 2016, 139, 3151-3162.	7.6	94
14	Cerebral amyloid angiopathy severity is linked to dilation of juxtacortical perivascular spaces. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 576-580.	4.3	76
15	Lines of Baillarger in vivo and ex vivo: Myelin contrast across lamina at 7 T MRI and histology. NeuroImage, 2016, 133, 163-175.	4.2	66
16	Risk Factors and Cognitive Relevance of Cortical Cerebral Microinfarcts in Patients With Ischemic Stroke or Transient Ischemic Attack. Stroke, 2016, 47, 2450-2455.	2.0	63
17	Heterogeneous histopathology of cortical microbleeds in cerebral amyloid angiopathy. Neurology, 2016, 86, 867-871.	1.1	63
18	Cortical Microinfarcts Detected In Vivo on 3 Tesla MRI. Stroke, 2015, 46, 255-257.	2.0	62

#	Article	IF	Citations
19	Prefrontal cortex cytoarchitecture in normal aging and Alzheimer's disease: a relationship with IQ. Brain Structure and Function, 2012, 217, 797-808.	2.3	58
20	Blood-Brain Barrier Leakage and Microvascular Lesions in Cerebral Amyloid Angiopathy. Stroke, 2019, 50, 328-335.	2.0	58
21	Cerebral microbleeds: from depiction to interpretation. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 598-607.	1.9	58
22	Association Between Subclinical Cardiac Biomarkers and Clinically Manifest Cardiac Diseases With Cortical Cerebral Microinfarcts. JAMA Neurology, 2017, 74, 403.	9.0	57
23	The Spectrum of MR Detectable Cortical Microinfarcts: A Classification Study with 7-Tesla Postmortem MRI and Histopathology. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 676-683.	4.3	54
24	Cerebral Microvascular Lesions on High-Resolution 7-Tesla MRI in Patients With Type 2 Diabetes. Diabetes, 2014, 63, 3523-3529.	0.6	51
25	Different microvascular alterations underlie microbleeds and microinfarcts. Annals of Neurology, 2019, 86, 279-292.	5. 3	51
26	Perivascular space dilation is associated with vascular amyloid- \hat{l}^2 accumulation in the overlying cortex. Acta Neuropathologica, 2022, 143, 331-348.	7.7	47
27	Neuropathological correlates of cortical superficial siderosis in cerebral amyloid angiopathy. Brain, 2020, 143, 3343-3351.	7.6	46
28	Evolution of DWI lesions in cerebral amyloid angiopathy. Neurology, 2017, 89, 2136-2142.	1.1	44
29	A practical approach to the management of cerebral amyloid angiopathy. International Journal of Stroke, 2021, 16, 356-369.	5.9	38
30	Rodent Models of Cerebral Microinfarct and Microhemorrhage. Stroke, 2018, 49, 803-810.	2.0	37
31	Microbleeds on MRI are associated with microinfarcts on autopsy in cerebral amyloid angiopathy. Neurology, 2016, 87, 1488-1492.	1.1	35
32	Reduced vascular amyloid burden at microhemorrhage sites in cerebral amyloid angiopathy. Acta Neuropathologica, 2017, 133, 409-415.	7.7	34
33	Visit-to-Visit Blood Pressure Variability, Neuropathology, and Cognitive Decline. Neurology, 2021, 96, e2812-e2823.	1.1	33
34	Histopathology of diffusion imaging abnormalities in cerebral amyloid angiopathy. Neurology, 2019, 92, e933-e943.	1.1	32
35	Semi-Automated Detection of Cerebral Microbleeds on 3.0 T MR Images. PLoS ONE, 2013, 8, e66610.	2.5	32
36	Cerebral Cortical Microinfarcts at 7Tesla MRI in Patients with Early Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 39, 163-167.	2.6	31

#	Article	IF	Citations
37	Cortical microinfarcts in memory clinic patients are associated with reduced cerebral perfusion. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1869-1878.	4.3	30
38	Cortical cerebral microinfarcts predict cognitive decline in memory clinic patients. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 44-53.	4.3	29
39	Cerebral Cortical Microinfarcts on Magnetic Resonance Imaging and Their Association With Cognition in Cerebral Amyloid Angiopathy. Stroke, 2018, 49, 2330-2336.	2.0	28
40	Cortical Microinfarcts on 7T MRI in Patients with Spontaneous Intracerebral Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1104-1106.	4.3	26
41	Patterns of intracranial vessel wall changes in relation to ischemic infarcts. Neurology, 2014, 83, 1316-1320.	1.1	25
42	Microbleeds colocalize with enlarged juxtacortical perivascular spaces in amnestic mild cognitive impairment and early Alzheimer's disease: A 7 Tesla MRI study. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 739-746.	4.3	23
43	Cortical Cerebral Microinfarcts on 3 Tesla MRI in Patients with Vascular Cognitive Impairment. Journal of Alzheimer's Disease, 2017, 60, 1443-1450.	2.6	22
44	White matter atrophy in cerebral amyloid angiopathy. Neurology, 2020, 95, e554-e562.	1.1	22
45	Neuropathology of Vascular Brain Health: Insights From Ex Vivo Magnetic Resonance Imaging–Histopathology Studies in Cerebral Small Vessel Disease. Stroke, 2022, 53, 404-415.	2.0	22
46	Histopathology of diffusion-weighted imaging-positive lesions in cerebral amyloid angiopathy. Acta Neuropathologica, 2020, 139, 799-812.	7.7	21
47	In vivo characterization of spontaneous microhemorrhage formation in mice with cerebral amyloid angiopathy. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 82-91.	4.3	19
48	Hippocampal T2 hyperintensities on 7Tesla MRI. NeuroImage: Clinical, 2013, 3, 196-201.	2.7	18
49	Relationship between white matter connectivity loss and cortical thinning in cerebral amyloid angiopathy. Human Brain Mapping, 2017, 38, 3723-3731.	3.6	18
50	Selective plane illumination microscopy (SPIM) with time-domain fluorescence lifetime imaging microscopy (FLIM) for volumetric measurement of cleared mouse brain samples. Review of Scientific Instruments, 2018, 89, 053705.	1.3	17
51	Off-label use of aducanumab for cerebral amyloid angiopathy. Lancet Neurology, The, 2021, 20, 596-597.	10.2	17
52	Assessing Cortical Cerebral Microinfarcts on High Resolution MR Images. Journal of Visualized Experiments, 2015, , .	0.3	16
53	Automatic Extraction of the Midsagittal Surface from Brain MR Images using the Kullback–Leibler Measure. Neuroinformatics, 2014, 12, 395-403.	2.8	15
54	Cerebral Amyloid Angiopathy With Vascular Iron Accumulation and Calcification. Stroke, 2018, 49, 2081-2087.	2.0	15

#	Article	IF	CITATIONS
55	Ischaemic Cavities in the Cerebellum: An ex vivo 7-Tesla MRI Study with Pathological Correlation. Cerebrovascular Diseases, 2014, 38, 17-23.	1.7	13
56	FLAIR images at 7 Tesla MRI highlight the ependyma and the outer layers of the cerebral cortex. NeuroImage, 2015, 104, 100-109.	4.2	13
57	CSF enhancement on post-contrast fluid-attenuated inversion recovery images; a systematic review. Neurolmage: Clinical, 2020, 28, 102456.	2.7	12
58	Deep learning assisted quantitative assessment of histopathological markers of Alzheimer's disease and cerebral amyloid angiopathy. Acta Neuropathologica Communications, 2021, 9, 141.	5.2	11
59	Lacunes, Microinfarcts, and Vascular Dysfunction in Cerebral Amyloid Angiopathy. Neurology, 2021, 96, e1646-e1654.	1.1	10
60	Myelin contrast across lamina at 7T, ex-vivo and in-vivo dataset. Data in Brief, 2016, 8, 990-1003.	1.0	9
61	Hereditary cerebral amyloid angiopathy, Piedmont-type mutation. Neurology: Genetics, 2020, 6, e411.	1.9	9
62	Imaging the Acute Formation of a Cortical Microbleed in Cerebral Amyloid Angiopathy. JAMA Neurology, 2017, 74, 120.	9.0	8
63	How to assess the reliability of cerebral microbleed rating?. Frontiers in Aging Neuroscience, 2013, 5, 57.	3.4	7
64	Journal Club: Florbetapir imaging in cerebral amyloid angiopathy-related hemorrhages. Neurology, 2018, 91, 574-577.	1.1	7
65	Association Between Cerebral Cortical Microinfarcts and Perilesional Cortical Atrophy on 3T MRI. Neurology, 2022, 98, .	1.1	7
66	Histopathological correlates of haemorrhagic lesions on <i>ex vivo</i> magnetic resonance imaging in immunized Alzheimer's disease cases. Brain Communications, 2022, 4, fcac021.	3.3	7
67	Corpus callosum lesions are associated with worse cognitive performance in cerebral amyloid angiopathy. Brain Communications, 2022, 4, .	3.3	7
68	How to Organize a Journal Club for Fellows and Residents. Stroke, 2018, 49, e283-e285.	2.0	6
69	High Resolution Imaging of Cerebral Small Vessel Disease with 7 T MRI. Acta Neurochirurgica Supplementum, 2014, 119, 125-130.	1.0	6
7 0	Histopathology of Cerebral Microinfarcts and Microbleeds in Spontaneous Intracerebral Hemorrhage. Translational Stroke Research, 2023, 14, 174-184.	4.2	6
71	Neuropathological correlates of cortical superficial siderosis in cerebral amyloid angiopathy. Alzheimer's and Dementia, 2020, 16, e041502.	0.8	1
72	Editorial: Cerebral Small Vessel Diseases: From Vessel Alterations to Cortical Parenchymal Injury. Frontiers in Neurology, 2020, 11, 92.	2.4	1

#	Article	IF	CITATIONS
73	The Perivascular Space Race: Understanding Their Role in Brain Clearance. Neurology, 2021, , 10.1212/WNL.000000000013105.	1.1	1
74	O5-02-03: CEREBRAL MICROVASCULAR LESIONS ON 7T MRI: RELATION TO AGE AND OTHER MARKERS OF SMALL VESSEL DISEASE. , 2014, 10, P292-P293.		0
7 5	IC-P-189: CEREBRAL CORTICAL MICROINFARCTS ON 3TESLA MRI IN AN ASIAN MEMORY CLINIC POPULATION. , 2014, 10, P105-P106.		O
76	IC-P-191: CEREBRAL MICROVASCULAR LESIONS ON 7T MRI: RELATION TO AGE AND OTHER MARKERS OF SMALL VESSEL DISEASE. , 2014, 10, P106-P107.		0
77	P3-187: CEREBRAL CORTICAL MICROINFARCTS ON 3TESLA MRI IN AN ASIAN MEMORY-CLINIC POPULATION. , 2014, 10, P698-P698.		O
78	O4-08-04: Heterogeneous histopathology of caa-related cortical microbleeds. , 2015, 11, P287-P288.		0
79	P1-218: Cerebral amyloid angiopathy severity is linked to dilation of juxtacortical perivascular spaces., 2015, 11, P435-P435.		0
80	[P2–067]: MRIâ€HISTOPATHOLOGY ASSOCIATIONS OF MICROBLEEDS AND MICROINFARCTS IN INTACT EX VIV HEMISPHERES OF PATIENTS WITH CEREBRAL AMYLOID ANGIOPATHY. Alzheimer's and Dementia, 2017, 13, P630.	/O 0.8	0
81	ICâ€Pâ€051: BLOODâ€BRAIN BARRIER LEAKAGE AND MICROVASCULAR LESIONS IN CEREBRAL AMYLOID ANGIOF A POSTMORTEM MRI AND HISTOPATHOLOGY STUDY. Alzheimer's and Dementia, 2018, 14, P50.	РАТНҮ:	0
82	ICâ€Pâ€095: CORTICAL CEREBRAL MICROINFARCTS PREDICT COGNITIVE DECLINE IN A MEMORY CLINIC POPULATION. Alzheimer's and Dementia, 2018, 14, P80.	0.8	0
83	Strategic corpus callosum lesions are associated with worse cognitive performance in cerebral amyloid angiopathy. Alzheimer's and Dementia, 2020, 16, e042464.	0.8	0
84	Abstract P342: Histopathological Correlates of MRI-Visible Perivascular Spaces in Cerebral Amyloid Angiopathy. Stroke, 2021, 52, .	2.0	0
85	Maximizing Brain Health After Hemorrhagic Stroke: Bugher Foundation Centers of Excellence. Stroke, 2022, , STROKEAHA121036197.	2.0	O
86	Locus coeruleus hypopigmentation is associated with an increased risk of cerebral microangiopathy in autopsy cases with cognitive impairment Alzheimer's and Dementia, 2021, 17 Suppl 3, e053974.	0.8	0