Anzar Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/62036/publications.pdf

Version: 2024-02-01

78 3,539 34 57
papers citations h-index g-index

84 84 84 3905
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Poly(ß-hydroxy thioether)s: synthesis through thiol-epoxy  click' reaction and post-polymerization modification to main-chain polysulfonium salts. Journal of Macromolecular Science - Pure and Applied Chemistry, 2022, 59, 2-10.	1.2	8
2	Buckybowl polymers: synthesis of corannulene-containing polymers through post-polymerization modification strategy. Polymer Chemistry, 2021, 12, 5209-5216.	1.9	5
3	Push-pull azobenzene chromophores with negative halochromism. Dyes and Pigments, 2021, 188, 109197.	2.0	7
4	Micellar Assembly and Disassembly of Organoselenium Block Copolymers through Alkylation and Dealkylation Processes. Polymers, 2021, 13, 2456.	2.0	1
5	Main-Chain Polysulfonium Salts: Development of Non-Ammonium Antibacterial Polymers Similar in Their Activity to Antibiotic Drugs Vancomycin and Kanamycin. Biomacromolecules, 2021, 22, 3534-3542.	2.6	12
6	Aggregation-free and high stability core–shell polymer nanoparticles with high fullerene loading capacity, variable fullerene type, and compatibility towards biological conditions. Chemical Science, 2021, 12, 4949-4957.	3.7	24
7	Hypersensitive azobenzenes: facile synthesis of clickable and cleavable azo linkers with tunable and high reducibility. Organic and Biomolecular Chemistry, 2020, 18, 420-424.	1.5	8
8	Antibacterial properties of main-chain cationic polymers prepared through amine–epoxy â€ [~] Clickâ€ [™] polymerization. RSC Advances, 2020, 10, 26752-26755.	1.7	16
9	Selenonium Polyelectrolyte Synthesis through Post-Polymerization Modifications of Poly (Glycidyl) Tj ETQq1 1 C).784314 r 2.0	rgBT ₄ /Overlo <mark>ck</mark>
10	Polyselenonium salts: synthesis through sequential selenium-epoxy â€~click' chemistry and Se-alkylation. Chemical Communications, 2020, 56, 14271-14274.	2.2	17
10	Polyselenonium salts: synthesis through sequential selenium-epoxy  click' chemistry and Se-alkylation. Chemical Communications, 2020, 56, 14271-14274. Selenium-Epoxy  Click' Reaction and Se-Alkylationâ€″Efficient Access to Organo-Selenium and Selenonium Compounds. Chemistry, 2020, 2, 827-836.	2.2	7
	Chémical Communications, 2020, 56, 14271-14274. Selenium-Epoxy †Click' Reaction and Se-Alkylation†Efficient Access to Organo-Selenium and		
11	Chémical Communications, 2020, 56, 14271-14274. Selenium-Epoxy †Click†Reaction and Se-Alkylation†Efficient Access to Organo-Selenium and Selenonium Compounds. Chemistry, 2020, 2, 827-836. Ethylene glycol-rich thermosensitive poly(ß-hydroxyl amine)s. Journal of Macromolecular Science -	0.9	7
11 12	Chémical Communications, 2020, 56, 14271-14274. Selenium-Epoxy †Click†Reaction and Se-Alkylation†Efficient Access to Organo-Selenium and Selenonium Compounds. Chemistry, 2020, 2, 827-836. Ethylene glycol-rich thermosensitive poly(ß-hydroxyl amine)s. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 685-690. Disulfides as mercapto-precursors in nucleophilic ring opening reaction of polymeric epoxides: establishing equimolar stoichiometric conditions in a thiol†epoxy †click†reaction. Chemical	0.9	1
11 12 13	Chémical Communications, 2020, 56, 14271-14274. Selenium-Epoxy †Click†Reaction and Se-Alkylation†Efficient Access to Organo-Selenium and Selenonium Compounds. Chemistry, 2020, 2, 827-836. Ethylene glycol-rich thermosensitive poly(ß-hydroxyl amine)s. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 685-690. Disulfides as mercapto-precursors in nucleophilic ring opening reaction of polymeric epoxides: establishing equimolar stoichiometric conditions in a thiol†epoxy †click†reaction. Chemical Communications, 2020, 56, 7419-7422. Synthesis of azobenzenes with high reactivity towards reductive cleavage: Enhancing the repertoire of hypersensitive azobenzenes and examining their dissociation behavior. Tetrahedron Letters, 2020,	0.9 1.2 2.2	7 1 22
11 12 13	Chémical Communications, 2020, 56, 14271-14274. Selenium-Epoxy †Click' Reaction and Se-Alkylationâ€"Efficient Access to Organo-Selenium and Selenonium Compounds. Chemistry, 2020, 2, 827-836. Ethylene glycol-rich thermosensitive poly(ß-hydroxyl amine)s. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 685-690. Disulfides as mercapto-precursors in nucleophilic ring opening reaction of polymeric epoxides: establishing equimolar stoichiometric conditions in a thiol†epoxy †click' reaction. Chemical Communications, 2020, 56, 7419-7422. Synthesis of azobenzenes with high reactivity towards reductive cleavage: Enhancing the repertoire of hypersensitive azobenzenes and examining their dissociation behavior. Tetrahedron Letters, 2020, 61, 152018. Deconstructing poloxamer and poloxamine block copolymers to access poly(ethylene glycol) and poly(propylene oxide)-based thermoresponsive polymers. Journal of Macromolecular Science - Pure	0.9 1.2 2.2 0.7	7 1 22 2
11 12 13 14	Chemical Communications, 2020, 56, 14271-14274. Selenium-Epoxy †Click' Reaction and Se-Alkylation†Efficient Access to Organo-Selenium and Selenonium Compounds. Chemistry, 2020, 2, 827-836. Ethylene glycol-rich thermosensitive poly(ß-hydroxyl amine)s. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 685-690. Disulfides as mercapto-precursors in nucleophilic ring opening reaction of polymeric epoxides: establishing equimolar stoichiometric conditions in a thiol†epoxy †click' reaction. Chemical Communications, 2020, 56, 7419-7422. Synthesis of azobenzenes with high reactivity towards reductive cleavage: Enhancing the repertoire of hypersensitive azobenzenes and examining their dissociation behavior. Tetrahedron Letters, 2020, 61, 152018. Deconstructing poloxamer and poloxamine block copolymers to access poly(ethylene glycol) and poly(propylene oxide)-based thermoresponsive polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 472-478. Photoinduced Proton-Transfer Polymerization: A Practical Synthetic Tool for Soft Lithography	0.9 1.2 2.2 0.7	7 1 22 2

#	Article	IF	CITATIONS
19	Thermoresponsive Poly(ß-hydroxyl amine)s: Synthesis of a New Stimuli Responsive Amphiphilic Homopolymer Family through Amine-Epoxy †Click' Polymerization. Polymers, 2019, 11, 1941.	2.0	10
20	Balancing antimicrobial performance with hemocompatibility in amphiphilic homopolymers. Journal of Polymer Science Part A, 2018, 56, 2391-2396.	2.5	7
21	Biologically activatable azobenzene polymers targeted at drug delivery and imaging applications. Biomaterials, 2018, 185, 333-347.	5.7	54
22	Proton Transfer Hydrogels: Versatility and Applications. Journal of the American Chemical Society, 2018, 140, 6700-6709.	6.6	37
23	Addressing the mid-point of polymer chains for multiple functionalization purposes through sequential thiol–epoxy †click' and esterification reactions. RSC Advances, 2017, 7, 19439-19447.	1.7	9
24	An activatable anticancer polymer–drug conjugate based on the self-immolative azobenzene motif. Journal of Materials Chemistry B, 2017, 5, 4574-4578.	2.9	24
25	Sequential coating of nanopores with charged polymers: A general approach for controlling pore properties of self-assembled block copolymer membranes. Macromolecular Research, 2017, 25, 1091-1099.	1.0	5
26	Scalable ambient synthesis of waterâ€soluble poly(βâ€hydroxythioâ€ether)s. Journal of Polymer Science Part A, 2017, 55, 3381-3386.	2.5	17
27	Post-polymerization modification reactions of poly(glycidyl methacrylate)s. RSC Advances, 2017, 7, 55874-55884.	1.7	118
28	Molecular Tailoring of Poly(styrene- <i>b</i> -methyl methacrylate) Block Copolymer Toward Perpendicularly Oriented Nanodomains with Sub-10 nm Features. ACS Macro Letters, 2017, 6, 1386-1391.	2.3	37
29	Architectural Effects of Organic Nanoparticles on Block Copolymer Orientation. Macromolecules, 2017, 50, 5025-5032.	2.2	20
30	Thiolâ€epoxy "click―chemistry: Application in preparation and postpolymerization modification of polymers. Journal of Polymer Science Part A, 2016, 54, 3057-3070.	2.5	112
31	Perpendicularly Oriented Block Copolymer Thin Films Induced by Neutral Star Copolymer Nanoparticles. ACS Macro Letters, 2015, 4, 133-137.	2.3	20
32	Azaâ€Michael addition reaction: Postâ€polymerization modification and preparation of PEI/PEGâ€based polyester hydrogels from enzymatically synthesized reactive polymers. Journal of Polymer Science Part A, 2015, 53, 745-749.	2.5	53
33	Multiply functionalized dendrimers: protective-group-free synthesis through sequential thiol-epoxy â€~click' chemistry and esterification reaction. RSC Advances, 2015, 5, 43961-43964.	1.7	24
34	Homopolymer bifunctionalization through sequential thiol–epoxy and esterification reactions: an optimization, quantification, and structural elucidation study. Polymer Chemistry, 2015, 6, 1393-1404.	1.9	78
35	Enzymatic â€~charging' of synthetic polymers. Polymer Chemistry, 2015, 6, 686-690.	1.9	25
36	Sequential Thiol-Epoxy and Esterification Reactions: A Facile Route to Bifunctional Homopolymer Sequences. Advances in Polymer Science, 2014, , 87-103.	0.4	3

#	Article	IF	CITATIONS
37	Thiolâ€epoxy polymerization via an AB monomer: Synthetic access to high molecular weight poly(βâ€hydroxythioâ€ether)s. Journal of Polymer Science Part A, 2014, 52, 2040-2046.	2.5	65
38	Self-assembly of an interacting binary blend of diblock copolymers in thin films: a potential route to porous materials with reactive nanochannel chemistry. Soft Matter, 2014, 10, 5755.	1.2	19
39	Functionalized Molecular Bottlebrushes. Macromolecules, 2014, 47, 35-40.	2.2	60
40	Dual-Reactive Hyperbranched Polymer Synthesis through Proton Transfer Polymerization of Thiol and Epoxide Groups. Macromolecules, 2014, 47, 5070-5080.	2.2	76
41	Amphipathic Homopolymers for siRNA Delivery: Probing Impact of Bifunctional Polymer Composition on Transfection. Biomacromolecules, 2014, 15, 1707-1715.	2.6	45
42	Enzyme-Triggered Cascade Reactions and Assembly of Abiotic Block Copolymers into Micellar Nanostructures. Journal of the American Chemical Society, 2014, 136, 5872-5875.	6.6	96
43	Enzyme Sensitive Synthetic Polymer Micelles Based on the Azobenzene Motif. Journal of the American Chemical Society, 2013, 135, 14056-14059.	6.6	184
44	Using reversibility of the dynamic covalent bond to create porosity in highly ordered polymer thin films under mild conditions and nano-pore functionalization in the gas phase. Polymer Chemistry, 2013, 4, 2691.	1.9	12
45	Designing functionalizable hydrogels through thiol–epoxy coupling chemistry. Chemical Communications, 2013, 49, 11191.	2.2	79
46	Protecting-group-free synthesis of chain-end multifunctional polymers by combining ATRP with thiol–epoxy â€~click' chemistry. Polymer Chemistry, 2013, 4, 2440.	1.9	56
47	Introducing a Reversible Linkage to Block Copolymer Self-Assembly: Towards Controlling Nanopore Chemistry. Chimia, 2012, 66, 444-444.	0.3	0
48	Efficient synthesis of multifunctional polymers via thiol–epoxy "click―chemistry. Chemical Communications, 2012, 48, 3130.	2.2	181
49	A general synthetic strategy to prepare poly(ethylene glycol)-based multifunctional copolymers. Polymer Chemistry, 2012, 3, 2342.	1.9	61
50	Synthesis and self-assembly of dynamic covalent block copolymers: towards a general route to pore-functionalized membranes. Chemical Communications, 2012, 48, 3427.	2.2	32
51	Supramolecular mimics of phase separating covalent diblock copolymers. Polymer Chemistry, 2012, 3, 2050.	1.9	30
52	Morphology Evolution of PS- <i>b</i> -P2VP Diblock Copolymers via Supramolecular Assembly of Hydroxylated Gold Nanoparticles. Macromolecules, 2012, 45, 1553-1561.	2.2	85
53	Thiol–epoxy â€~click' polymerization: efficient construction of reactive and functional polymers. Polymer Chemistry, 2012, 3, 3224.	1.9	128
54	Facile and General Preparation of Multifunctional Main-Chain Cationic Polymers through Application of Robust, Efficient, and Orthogonal Click Chemistries. Journal of the American Chemical Society, 2012, 134, 17291-17297.	6.6	82

#	Article	IF	Citations
55	Phase separation of supramolecular and dynamic block copolymers. Polymer Chemistry, 2012, 3, 3033.	1.9	73
56	Effect of precursor chemical composition on the formation and stability of G-quadruplex core supramolecular star polymers. Polymer Chemistry, 2012, 3, 2615.	1.9	10
57	Supramolecular star polymers with compositional heterogeneity. Journal of Polymer Science Part A, 2012, 50, 1844-1850.	2.5	13
58	Effect of precursor chainâ€length on the formation and stability of poly(ethylene glycol)â€based supramolecular star polymers. Journal of Polymer Science Part A, 2012, 50, 2415-2420.	2.5	7
59	Synthesis of thermally stable Au-core/Pt-shell nanoparticles and their segregation behavior in diblock copolymer mixtures. Soft Matter, 2011, 7, 6255.	1.2	47
60	Multifunctional Trackable Dendritic Scaffolds and Delivery Agents. Angewandte Chemie - International Edition, 2011, 50, 3425-3429.	7.2	85
61	N-Vinyltriazoles: A New Functional Monomer Family through Click Chemistry. Macromolecules, 2010, 43, 5474-5477.	2.2	41
62	Accelerated Growth of Dendrimers via Thiolâ^Ene and Esterification Reactions. Macromolecules, 2010, 43, 6004-6013.	2.2	90
63	Facile access to internally functionalized dendrimers through efficient and orthogonal click reactions. Chemical Communications, 2010, 46, 1556.	2.2	94
64	Synthesis and Characterization of Isomeric Vinyl-1,2,3-triazole Materials by Azideâ^'Alkyne Click Chemistry. Macromolecules, 2009, 42, 6068-6074.	2.2	74
65	Dendronized macromonomers for three-dimensional data storage. Chemical Communications, 2009, , 425-427.	2.2	26
66	Synthesis and characterization of hyperbranched polymers with increased chemical versatility for imprint lithographic resists. Journal of Polymer Science Part A, 2008, 46, 6238-6254.	2.5	34
67	Highâ€Performance, Nondiffusive Crosslinked Polymers for Holographic Data Storage. Advanced Materials, 2008, 20, 3937-3941.	11.1	17
68	One- and Two-Photon Induced Polymerization of Methylmethacrylate Using Colloidal CdS Semiconductor Quantum Dots. Journal of the American Chemical Society, 2008, 130, 8280-8288.	6.6	56
69	Holographic Recording in Cross-Linked Polymeric Matrices through Photoacid Generation. Chemistry of Materials, 2008, 20, 3669-3674.	3.2	6
70	Poly(ortho -phenylene ethynylene)s: Synthetic accessibility and optical properties. Journal of Polymer Science Part A, 2006, 44, 1619-1627.	2.5	28
71	Towards Photocontrol over the Helix–Coil Transition in Foldamers: Synthesis and Photoresponsive Behavior of Azobenzene-Core Amphiphilic Oligo(meta-phenylene ethynylene)s. Chemistry - A European Journal, 2006, 12, 4764-4774.	1.7	95
72	Prototype of a Photoswitchable Foldamer. Angewandte Chemie - International Edition, 2006, 45, 1878-1881.	7.2	173

#	Article	IF	CITATION
73	Practical synthesis of an amphiphilic, non-ionic poly(para-phenyleneethynylene) derivative with a remarkable quantum yield in water. Chemical Communications, 2005, , 584-586.	2.2	74
74	Microwave-accelerated synthesis of lengthy and defect-free poly(m-phenyleneethynylene)s via AB? and A2 + BB? polycondensation routesElectronic supplementary information (ESI) available: monomer syntheses, polycondensation procedures, and polymer characterization. See http://www.rsc.org/suppdata/cc/b3/b312762a/. Chemical Communications, 2004, , 300.	2.2	25
75	Avenues into the Synthesis of Illusive Poly(m-phenylene-alt-squaraine)s:  Polycondensation of m-Phenylenediamines with Squaric Acid Intercepted by Intermediate Semisquaraines of Exceptionally Low Reactivity. Journal of Organic Chemistry, 2004, 69, 184-187.	1.7	12
76	Functional organic nanotubes from hollow helical scaffolds. Synthetic Metals, 2004, 147, 37-42.	2.1	8
77	Intramolecular Cross-Linking of Helical Folds: An Approach to Organic Nanotubes. Angewandte Chemie - International Edition, 2003, 42, 6021-6024.	7.2	115
78	Discrete Organic Nanotubes Based on a Combination of Covalent and Non-Covalent Approaches. Topics in Current Chemistry, 0, , 89-150.	4.0	95