Beili Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6203321/publications.pdf Version: 2024-02-01

REUTIT

#	Article	IF	CITATIONS
1	Fabrication of P-Doped Porous Carbon Catalysts, with Inherent N Functionality, from Waste Peanut Shells and Their Application in the Metal-Free Aerobic Oxidation of Alcohols. ACS Sustainable Chemistry and Engineering, 2022, 10, 911-922.	6.7	16
2	One-pot mechanochemical assembly of lignocellulose nanofiber/graphite nanocomposites for wearable electronic devices. Chemical Engineering Journal, 2022, 437, 135286.	12.7	18
3	Robust and lightweight biofoam based on cellulose nanofibrils for high-efficient methylene blue adsorption. Cellulose, 2021, 28, 273-288.	4.9	15
4	Polydopamine-coated cellulose nanocrystal as functional filler to fabricate nanocomposite hydrogel with controllable performance in response to near-infrared light. Cellulose, 2021, 28, 2255-2271.	4.9	23
5	Fabrication of quartz crystal microbalance humidity sensors based on super-hydrophilic cellulose nanocrystals. Cellulose, 2021, 28, 3409-3421.	4.9	15
6	Multiâ€Functional Edible Film with Excellent UV Barrier Performance and Accurate Instant Ion Printing Capability. Advanced Sustainable Systems, 2020, 4, 2000043.	5.3	8
7	A bioinspired hydrogen bond crosslink strategy toward toughening ultrastrong and multifunctional nanocomposite hydrogels. Journal of Materials Chemistry B, 2020, 8, 4002-4015.	5.8	88
8	Removal of bisphenol A from aqueous solution via host-guest interactions based on beta-cyclodextrin grafted cellulose bead. International Journal of Biological Macromolecules, 2019, 140, 1-9.	7.5	34
9	Smart cellulose-derived magnetic hydrogel with rapid swelling and deswelling properties for remotely controlled drug release. Cellulose, 2019, 26, 6861-6877.	4.9	54
10	Natural skin-inspired versatile cellulose biomimetic hydrogels. Journal of Materials Chemistry A, 2019, 7, 26442-26455.	10.3	236
11	Microfibrillated cellulose enhancement to mechanical and conductive properties of biocompatible hydrogels. Carbohydrate Polymers, 2019, 205, 244-254.	10.2	42
12	In situ polymerization approach to cellulose–polyacrylamide interpenetrating network hydrogel with high strength and pH-responsive properties. Cellulose, 2019, 26, 1825-1839.	4.9	58
13	Halogenâ€Bondâ€Promoted αâ€Câ~'H Amination of Ethers for the Synthesis of Hemiaminal Ethers. Advanced Synthesis and Catalysis, 2018, 360, 1761-1767.	4.3	30
14	Microwave-assisted facile synthesis of TEMPO-oxidized cellulose beads with high adsorption capacity for organic dyes. Cellulose, 2017, 24, 5025-5040.	4.9	35
15	Controlled Construction of Nanostructured Organic–Inorganic Hybrid Material Induced by Nanocellulose. ACS Sustainable Chemistry and Engineering, 2017, 5, 8456-8463.	6.7	19
16	Synthesis of Fused Heterocycles via Oneâ€pot Oxidative Oâ€Arylation, Pdâ€Catalyzed C(sp ³)â€H Arylation. Advanced Synthesis and Catalysis, 2017, 359, 3299-3303.	4.3	4
17	Development of organic–inorganic hybrid beads from sepiolite and cellulose for effective adsorption of malachite green. RSC Advances, 2017, 7, 38965-38972.	3.6	27
18	One-Pot Assembly of Microfibrillated Cellulose Reinforced PVA–Borax Hydrogels with Self-Healing and pH-Responsive Properties. ACS Sustainable Chemistry and Engineering, 2017, 5, 948-956.	6.7	188

Beili Lu

#	Article	IF	CITATIONS
19	Oneâ€Pot Assembly of Fused Heterocycles <i>via</i> Oxidative Palladiumâ€Catalyzed Cyclization of Arylols and Iodoarenes. Advanced Synthesis and Catalysis, 2016, 358, 353-357.	4.3	36
20	Bi(OTf)3-catalyzed C–H bond functionalization of azaarenes for the facile access to oxindoles featuring quaternary carbon centers. RSC Advances, 2015, 5, 8285-8288.	3.6	20