Marina Lasagni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6203248/publications.pdf

Version: 2024-02-01

58	1,654	21 h-index	39
papers	citations		g-index
59	59	59	1718
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Detection of plastic particles in marine sponges by a combined infrared micro-spectroscopy and pyrolysis-gas chromatography-mass spectrometry approach. Science of the Total Environment, 2022, 819, 152965.	8.0	22
2	Cytotoxic Compounds from Alcyoniidae: An Overview of the Last 30 Years. Marine Drugs, 2022, 20, 134.	4.6	10
3	Phthalates bioconcentration in the soft corals: Inter- and intra- species differences and ecological aspects. Chemosphere, 2022, 297, 134247.	8.2	7
4	First detection of microplastics in reef-building corals from a Maldivian atoll. Marine Pollution Bulletin, 2022, 180, 113773.	5. 0	18
5	Omega-3 rich oils from microalgae: A chitosan mediated in situ transesterification method. Food Chemistry, 2021, 337, 127745.	8.2	5
6	Evidence of microplastic ingestion by cultured European sea bass (Dicentrarchus labrax). Marine Pollution Bulletin, 2021, 168, 112450.	5 . 0	35
7	The release process of microfibers: from surgical face masks into the marine environment. Environmental Advances, 2021, 4, 100042.	4.8	175
8	Extraction of microplastic from marine sediments: A comparison between pressurized solvent extraction and density separation. Marine Pollution Bulletin, 2021, 168, 112436.	5 . 0	18
9	Prebiotic Effect of Maitake Extract on a Probiotic Consortium and Its Action after Microbial Fermentation on Colorectal Cell Lines. Foods, 2021, 10, 2536.	4.3	8
10	An annual study on plastic accumulation in surface water and sediment cores from the coastline of Tenerife (Canary Island, Spain). Marine Pollution Bulletin, 2021, 173, 113072.	5.0	8
11	Biocompatible solid-phase microextraction coupled to liquid chromatography triple quadrupole mass spectrometry analysis for the determination of phthalates in marine invertebrate. Journal of Chromatography A, 2020, 1618, 460852.	3.7	24
12	A non-lethal SPME-LC/MS method for the analysis of plastic-associated contaminants in coral reef invertebrates. Analytical Methods, 2020, 12, 1935-1942.	2.7	25
13	Determination of phthalates in fish fillets by liquid chromatography tandem mass spectrometry (LC-MS/MS): A comparison of direct immersion solid phase microextraction (SPME) versus ultrasonic assisted solvent extraction (UASE). Chemosphere, 2020, 255, 127034.	8.2	29
14	Multiâ€analytical characterization of perigonadal fat in bluefin tuna: from waste to marine lipid source. Journal of the Science of Food and Agriculture, 2019, 99, 4571-4579.	3.5	8
15	Microplastics as a threat to coral reef environments: Detection of phthalate esters in neuston and scleractinian corals from the Faafu Atoll, Maldives. Marine Pollution Bulletin, 2019, 142, 234-241.	5.0	7 3
16	Microbial desulfurization of ground tire rubber (GTR): Characterization of microbial communities and rheological and mechanical properties of GTR and natural rubber composites (GTR/NR). Polymer Degradation and Stability, 2019, 160, 102-109.	5.8	25
17	Microplastic and charred microplastic in the Faafu Atoll, Maldives. Marine Pollution Bulletin, 2018, 136, 464-471.	5.0	103
18	Experimental and Theoretical Investigation on the Catalytic Generation of Environmentally Persistent Free Radicals from Benzene. Journal of Physical Chemistry C, 2017, 121, 9381-9393.	3.1	38

#	Article	IF	CITATIONS
19	PCDD/F and dioxin-like PCB minimization: A 13-year experimental study along the flue gas cleaning system of a secondary aluminium refining plant. Chemosphere, 2017, 181, 409-417.	8.2	3
20	Charred honeycombs discovered in Iron Age Northern Italy. A new light on boat beekeeping and bee pollination in pre-modern world. Journal of Archaeological Science, 2017, 83, 26-40.	2.4	9
21	Lab-scale pyrolysis of the Automotive Shredder Residue light fraction and characterization of tar and solid products. Waste Management, 2017, 64, 263-271.	7.4	20
22	Nitrogen activation of carbon-encapsulated zero-valent iron nanoparticles and influence of the activation temperature on heavy metals removal. IOP Conference Series: Earth and Environmental Science, 2017, 64, 012070.	0.3	4
23	Pyrolysis of automotive shredder residue light fraction: maximization of the tar yield using design of experiment. IOP Conference Series: Earth and Environmental Science, 2017, 64, 012067.	0.3	1
24	Effect of COSMOS technologies in detoxifying municipal solid waste incineration fly ash, preliminary results. IOP Conference Series: Earth and Environmental Science, 2017, 64, 012068.	0.3	1
25	Biological devulcanization of ground natural rubber by Gordonia desulfuricans DSM 44462T strain. Applied Microbiology and Biotechnology, 2016, 100, 8931-8942.	3.6	30
26	The rate-determining step in a low temperature PCDD/F formation from oxidative breakdown of native carbon in MSWI fly ash. Chemosphere, 2016, 165, 110-117.	8.2	5
27	Distribution and Removal of Polycyclic Aromatic Hydrocarbons in Two Italian Municipal Wastewater Treatment Plants in 2011–2013. Polycyclic Aromatic Compounds, 2016, 36, 213-228.	2.6	17
28	Modeling and optimization of ultrasonic devulcanization using the response surface methodology based on central composite face-centered design. Chemometrics and Intelligent Laboratory Systems, 2015, 144, 1-10.	3.5	55
29	Mechanical and rheological properties of natural rubber compounds containing devulcanized ground tire rubber from several methods. Polymer Degradation and Stability, 2015, 121, 369-377.	5.8	40
30	Biodegradation of variable-chain-length n-alkanes in Rhodococcus opacus R7 and the involvement of an alkane hydroxylase system in the metabolism. AMB Express, 2014, 4, 73.	3.0	46
31	Characterization and supercritical CO2 devulcanization of cryo-ground tire rubber: Influence of devulcanization process on reclaimed material. Polymer Degradation and Stability, 2014, 102, 15-24.	5.8	77
32	Full factorial experimental design to study the devulcanization of ground tire rubber in supercritical carbon dioxide. Journal of Supercritical Fluids, 2014, 92, 249-256.	3.2	31
33	Contribution of wood combustion to PAH and PCDD/F concentrations in two urban sites in Northern Italy. Journal of Aerosol Science, 2013, 56, 30-40.	3.8	51
34	Kinetic Modeling of the Formation and Destruction of Polychlorinated Dibenzo-p-dioxin and Dibenzofuran from Fly Ash Native Carbon at 300 °C. Environmental Science & Environm	10.0	11
35	Antimicrobial activity of thin metallic silver flakes, waste products of a manufacturing process. Journal of Environmental Sciences, 2011, 23, 1570-1577.	6.1	3
36	Kinetics of carbon degradation and PCDD/PCDF formation on MSWI fly ash. Chemosphere, 2009, 74, 377-383.	8.2	12

3

#	Article	IF	Citations
37	Application of chemical and chemometric analytical techniques to the study of ancient ceramics from Dougga (Tunisia). Microchemical Journal, 2008, 88, 150-159.	4.5	50
38	Kinetic Modeling of Polychlorinated Dibenzo- <i>p</i> dioxin and Dibenzofuran Formation Based on Carbon Degradation Reactions. Environmental Science & E	10.0	19
39	Prevention of PCDD/F Formation and Minimization of Their Emission at the Stack of a Secondary Aluminum Casting Plant. Environmental Science & Emp; Technology, 2008, 42, 7476-7481.	10.0	16
40	Bioremediation of Diesel Fuel Contaminated Soil: Effect of Non Ionic Surfactants and Selected Bacteria Addition. Annali Di Chimica, 2007, 97, 799-805.	0.6	16
41	Kinetics of MSWI Fly Ash Thermal Degradation. 2. Mechanism of Native Carbon Gasification. Environmental Science & Environmenta	10.0	14
42	Kinetics of MSWI Fly Ash Thermal Degradation. 1. Empirical Rate Equation for Native Carbon Gasification. Environmental Science & Eamp; Technology, 2000, 34, 130-136.	10.0	24
43	Identification, Characterization, and Remediation of Contaminated Sites: A Case Study. Annals of the New York Academy of Sciences, 1999, 879, 396-399.	3.8	0
44	Characterization of fly ash from municipal solid waste incinerators using differential scanning calorimetry. Thermochimica Acta, 1998, 321, 133-141.	2.7	12
45	Total Organic Carbon in Fly Ash from MSW Incinerators as a Potential Combustion Indicator: Setting Up of the Measurement Methodology and Preliminary Evaluation. Waste Management and Research, 1997, 15, 507-521.	3.9	14
46	Critical review of the receptor model based on target transformation factor analysis. Chemosphere, 1997, 35, 1847-1865.	8.2	8
47	Thermal Reaction Kinetics and Mechanism of PCDF, PCDD, and PCB Parent Compounds and Activated Carbon on Silica. Environmental Science & Environmental	10.0	13
48	A hypothesis on the mechanism of PCDD biological activity based on molecular electrostatic potential modeling. Part 2. Computational and Theoretical Chemistry, 1995, 340, 83-95.	1.5	26
49	Degradation of Octachlorodibenzofuran and Octachlorodibenzo-p-dioxin Spiked on Fly Ash: Kinetics and Mechanism. Environmental Science & Eamp; Technology, 1995, 29, 577-585.	10.0	27
50	New molecular descriptors for 2D and 3D structures. Theory. Journal of Chemometrics, 1994, 8, 263-272.	1.3	269
51	Chemometric approaches in environmental problems concerning PCDD and PCDF. Data interpretation and source correlation. Mechanisms of formation and destruction in MSW combustion process. Fresenius' Journal of Analytical Chemistry, 1994, 348, 111-120.	1.5	5
52	Toward a mechanistic understanding of PCDD biological activity based on molecular electrostatic potential modeling. Computational and Theoretical Chemistry, 1994, 303, 43-54.	1.5	17
53	Estimation of the toxicity equivalents of PCDD/PCDF mixtures from combustion sources when specific congener information is lacking: Preliminary results. Chemosphere, 1993, 26, 1419-1427.	8.2	6
54	The Toxicity Equivalency Factor Scheme Applied To Municipal Incinerator Pcdd/Pcdf Emissions When Specific Congener Information Is Lacking. Waste Management and Research, 1992, 10, 329-343.	3.9	3

#	Article	IF	CITATION
55	A selected bibliography on PCDD and PCDF formation. Toxicological and Environmental Chemistry, 1989, 22, 239-261.	1.2	21
56	The combustion of municipal solid wastes and PCDD and PCDF emissions. Part 1. PCDD and PCDF in MSW. Chemosphere, 1989, 18, 1457-1464.	8.2	13
57	The combustion of municipal solid wastes and PCDD and PCDF emissions. Part 2. PCDD and PCDF in stack gases. Chemosphere, 1989, 18, 1465-1474.	8.2	22
58	The combustion of municipal solid wastes and PCDD and PCDF emissions. Part 3. PCDD and PCDF in fly ash. Chemosphere, 1989, 18, 1475-1483.	8.2	12