Antoine J Shahin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6203160/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Attentional Gain Control of Ongoing Cortical Speech Representations in a "Cocktail Party― Journal of Neuroscience, 2010, 30, 620-628.	3.6	390
2	Music training leads to the development of timbre-specific gamma band activity. Neurolmage, 2008, 41, 113-122.	4.2	131
3	Neural mechanisms for illusory filling-in of degraded speech. NeuroImage, 2009, 44, 1133-1143.	4.2	116
4	Brain oscillations during semantic evaluation of speech. Brain and Cognition, 2009, 70, 259-266.	1.8	113
5	Understanding the Benefits of Musical Training. Annals of the New York Academy of Sciences, 2009, 1169, 133-142.	3.8	85
6	Sensitivity of EEG and MEG to the N1 and P2 Auditory Evoked Responses Modulated by Spectral Complexity of Sounds. Brain Topography, 2007, 20, 55-61.	1.8	52
7	Neurophysiological Influence of Musical Training on Speech Perception. Frontiers in Psychology, 2011, 2, 126.	2.1	48
8	Development of Auditory Phase-Locked Activity for Music Sounds. Journal of Neurophysiology, 2010, 103, 218-229.	1.8	44
9	Neural Mechanisms Underlying Cross-Modal Phonetic Encoding. Journal of Neuroscience, 2018, 38, 1835-1849.	3.6	38
10	Neural restoration of degraded audiovisual speech. NeuroImage, 2012, 60, 530-538.	4.2	33
11	Enhanced anterior-temporal processing for complex tones in musicians. Clinical Neurophysiology, 2007, 118, 209-220.	1.5	26
12	Development of the N1–P2 auditory evoked response to amplitude rise time and rate of formant transition of speech sounds. Neuroscience Letters, 2013, 544, 56-61.	2.1	23
13	Putative mechanisms mediating tolerance for audiovisual stimulus onset asynchrony. Journal of Neurophysiology, 2015, 113, 1437-1450.	1.8	23
14	Multisensory integration enhances phonemic restoration. Journal of the Acoustical Society of America, 2009, 125, 1744-1750.	1.1	20
15	Cross-modal phonetic encoding facilitates the McGurk illusion and phonemic restoration. Journal of Neurophysiology, 2018, 120, 2988-3000.	1.8	14
16	Alpha activity marking word boundaries mediates speech segmentation. European Journal of Neuroscience, 2012, 36, 3740-3748.	2.6	12
17	Neurophysiology underlying influence of stimulus reliability on audiovisual integration. European Journal of Neuroscience, 2018, 48, 2836-2848.	2.6	12
18	Scalp Topography and Intracerebral Sources for ERPs Recorded During Auditory Target Detection. Brain Topography, 2006, 19, 89-105.	1.8	10

ANTOINE J SHAHIN

#	Article	IF	CITATIONS
19	Tolerance for audiovisual asynchrony is enhanced by the spectrotemporal fidelity of the speaker's mouth movements and speech. Language, Cognition and Neuroscience, 2017, 32, 1102-1118.	1.2	10
20	Neural Time Course of Echo Suppression in Humans. Journal of Neuroscience, 2010, 30, 1905-1913.	3.6	9
21	Visual context due to speech-reading suppresses the auditory response to acoustic interruptions in speech. Frontiers in Neuroscience, 2014, 8, 173.	2.8	9
22	Neural evidence accounting for interindividual variability of the McGurk illusion. Neuroscience Letters, 2019, 707, 134322.	2.1	8
23	Visual Enhancement of Relevant Speech in aÂâ€~CocktailÂParty'. Multisensory Research, 2020, 33, 277-294.	1.1	4
24	The Cross-Modal Suppressive Role of Visual Context on Speech Intelligibility: An ERP Study. Brain Sciences, 2020, 10, 810.	2.3	4
25	Rethinking the Mechanisms Underlying the McGurk Illusion. Frontiers in Human Neuroscience, 2021, 15, 616049.	2.0	4
26	Neurophysiology of spectrotemporal cue organization of spoken language in auditory memory. Brain and Language, 2014, 130, 42-49.	1.6	3
27	Audition controls the flow of visual time during multisensory perception. IScience, 2022, 25, 104671.	4.1	1