Taesu Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6202934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexible, highly efficient all-polymer solar cells. Nature Communications, 2015, 6, 8547.	5.8	740
2	From Fullerene–Polymer to All-Polymer Solar Cells: The Importance of Molecular Packing, Orientation, and Morphology Control. Accounts of Chemical Research, 2016, 49, 2424-2434.	7.6	407
3	Highâ€Performance Allâ€Polymer Solar Cells Via Sideâ€Chain Engineering of the Polymer Acceptor: The Importance of the Polymer Packing Structure and the Nanoscale Blend Morphology. Advanced Materials, 2015, 27, 2466-2471.	11.1	279
4	Comparative Study of Thermal Stability, Morphology, and Performance of All-Polymer, Fullerene–Polymer, and Ternary Blend Solar Cells Based on the Same Polymer Donor. Macromolecules, 2017, 50, 6861-6871.	2.2	118
5	Correlation between Phase-Separated Domain Sizes of Active Layer and Photovoltaic Performances in All-Polymer Solar Cells. Macromolecules, 2016, 49, 5051-5058.	2.2	93
6	Comparative Study of the Mechanical Properties of All-Polymer and Fullerene–Polymer Solar Cells: The Importance of Polymer Acceptors for High Fracture Resistance. Chemistry of Materials, 2018, 30, 2102-2111.	3.2	79
7	Au@Polymer Core–Shell Nanoparticles for Simultaneously Enhancing Efficiency and Ambient Stability of Organic Optoelectronic Devices. ACS Applied Materials & Interfaces, 2014, 6, 16956-16965.	4.0	71
8	Impact of the photo-induced degradation of electron acceptors on the photophysics, charge transport and device performance of all-polymer and fullerene–polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 22170-22179.	5.2	71
9	Design of Cyanovinyleneâ€Containing Polymer Acceptors with Large Dipole Moment Change for Efficient Charge Generation in Highâ€Performance Allâ€Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1701436.	10.2	70
10	Importance of 2D Conjugated Side Chains of Benzodithiophene-Based Polymers in Controlling Polymer Packing, Interfacial Ordering, and Composition Variations of All-Polymer Solar Cells. Chemistry of Materials, 2017, 29, 9407-9415.	3.2	67
11	Mechanically robust and high-performance ternary solar cells combining the merits of all-polymer and fullerene blends. Journal of Materials Chemistry A, 2018, 6, 4494-4503.	5.2	54
12	Improved Internal Quantum Efficiency and Light-Extraction Efficiency of Organic Light-Emitting Diodes via Synergistic Doping with Au and Ag Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 27911-27919.	4.0	34
13	Synthesis and side-chain engineering of phenylnaphthalenediimide (PNDI)-based n-type polymers for efficient all-polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 5449-5459.	5.2	29
14	Terpolymer approach for controlling the crystalline behavior of naphthalene diimide-based polymer acceptors and enhancing the performance of all-polymer solar cells. Polymer Journal, 2016, 48, 517-524.	1.3	25
15	Simultaneously Enhancing Light Extraction and Device Stability of Organic Lightâ€Emitting Diodes using a Corrugated Polymer Nanosphere Templated PEDOT:PSS Layer. Advanced Energy Materials, 2014, 4, 1301345.	10.2	19
16	Impact of highly crystalline, isoindigo-based small-molecular additives for enhancing the performance of all-polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 21291-21299.	5.2	13
17	Generalized Negentropy for Statistical Dependence. , 2007, , .		0

Lightâ€Emitting Diodes: Simultaneously Enhancing Light Extraction and Device Stability of Organic Lightâ€Emitting Diodes using a Corrugated Polymer Nanosphere Templated PEDOT:PSS Layer (Adv. Energy) Tj ETQ**q0.0** 0 rgB**0** /Overlock 18

#	Article	IF	CITATIONS
19	Effect of the acceptor types on the fracture behavior of polymer solar cells. , 2018, , .		0