Fanbin Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6202815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene-based microwave absorbing composites: A review and prospective. Composites Part B: Engineering, 2018, 137, 260-277.	5.9	574
2	Interface Modulating CNTs@PANi Hybrids by Controlled Unzipping of the Walls of CNTs To Achieve Tunable High-Performance Microwave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 12142-12153.	4.0	299
3	Carbonized Design of Hierarchical Porous Carbon/Fe ₃ O ₄ @Fe Derived from Loofah Sponge to Achieve Tunable High-Performance Microwave Absorption. ACS Sustainable Chemistry and Engineering, 2018, 6, 11801-11810.	3.2	256
4	Growth of NiAl‣ayered Double Hydroxide on Graphene toward Excellent Anticorrosive Microwave Absorption Application. Advanced Science, 2021, 8, 2002658.	5.6	227
5	Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chemical Engineering Journal, 2020, 391, 123512.	6.6	212
6	A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption. Composites Part B: Engineering, 2021, 211, 108642.	5.9	204
7	Synergistic Enhancement of Microwave Absorption Using Hybridized Polyaniline@helical CNTs with Dual Chirality. ACS Applied Materials & amp; Interfaces, 2017, 9, 15711-15718.	4.0	173
8	Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon, 2021, 180, 163-184.	5.4	147
9	Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Research, 2020, 13, 477-484.	5.8	135
10	Design of porous C@Fe ₃ O ₄ hybrid nanotubes with excellent microwave absorption. Physical Chemistry Chemical Physics, 2016, 18, 2510-2516.	1.3	111
11	Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process. Nano Research, 2018, 11, 2847-2861.	5.8	109
12	Decoration of basalt fibers with hybrid Fe ₃ O ₄ microspheres and their microwave absorption application in bisphthalonitrile composites. Journal of Materials Chemistry A, 2013, 1, 2286-2296.	5.2	108
13	Wheat straw-derived magnetic carbon foams: In-situ preparation and tunable high-performance microwave absorption. Nano Research, 2019, 12, 1423-1429.	5.8	99
14	In situ intercalation polymerization approach to polyamide-6/graphite nanoflakes for enhanced thermal conductivity. Composites Part B: Engineering, 2017, 117, 165-173.	5.9	92
15	3D porous biomass-derived carbon materials: biomass sources, controllable transformation and microwave absorption application. Green Chemistry, 2022, 24, 647-674.	4.6	85
16	Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chemical Engineering Journal, 2022, 433, 134496.	6.6	83
17	Multifunctional antimony tin oxide/reduced graphene oxide aerogels with wideband microwave absorption and low infrared emissivity. Composites Part B: Engineering, 2022, 231, 109565.	5.9	77
18	Well-matched impedance of polypyrrole-loaded cotton non-woven fabric/polydimethylsiloxane composite for extraordinary microwave absorption. Composites Science and Technology, 2020, 197, 108246.	3.8	74

Fanbin Meng

#	Article	IF	CITATIONS
19	Two birds with one stone: Graphene oxide@sulfonated polyaniline nanocomposites towards high-performance electromagnetic wave absorption and corrosion protection. Composites Science and Technology, 2021, 204, 108630.	3.8	68
20	Hybridization-Induced Polarization of Graphene Sheets by Intercalation-Polymerized Polyaniline toward High Performance of Microwave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 17100-17107.	4.0	64
21	Intercalating Hybrids of Sandwich-like Fe ₃ O ₄ –Graphite: Synthesis and Their Synergistic Enhancement of Microwave Absorption. ACS Sustainable Chemistry and Engineering, 2018, 6, 16744-16753.	3.2	63
22	Two birds with one stone: Superhelical chiral polypyrrole towards high-performance electromagnetic wave absorption and corrosion protection. Chemical Engineering Journal, 2022, 427, 131582.	6.6	62
23	Hierarchical composites of polypyrrole/graphene oxide synthesized by in situ intercalation polymerization for high efficiency and broadband responses of electromagnetic absorption. Composites Science and Technology, 2016, 127, 71-78.	3.8	57
24	Multifunctional aramid nanofibers reinforced RGO aerogels integrated with high-efficiency microwave absorption, sound absorption and heat insulation performance. Journal of Materials Science and Technology, 2022, 130, 166-175.	5.6	45
25	Growth of Fe ₃ O ₄ nanosheet arrays on graphene by a mussel-inspired polydopamine adhesive for remarkable enhancement in electromagnetic absorptions. RSC Advances, 2015, 5, 101121-101126.	1.7	41
26	Ultrafast physical bacterial inactivation and photocatalytic self-cleaning of ZnO nanoarrays for rapid and sustainable bactericidal applications. Science of the Total Environment, 2020, 738, 139714.	3.9	38
27	Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding. Journal of Materials Science and Technology, 2022, 111, 57-65.	5.6	37
28	Room temperature dissolution of cellulose in tetra-butylammonium hydroxide aqueous solvent through adjustment of solvent amphiphilicity. Cellulose, 2017, 24, 49-59.	2.4	34
29	Glowing stereocomplex biopolymers are generating power: polylactide/carbon quantum dot hybrid nanofibers with high piezoresponse and multicolor luminescence. Journal of Materials Chemistry A, 2019, 7, 1810-1823.	5.2	31
30	Intercalation Polymerization Approach for Preparing Graphene/Polymer Composites. Polymers, 2018, 10, 61.	2.0	28
31	Hyperbranched copper phthalocyanine decorated Fe ₃ O ₄ microspheres with extraordinary microwave absorption properties. RSC Advances, 2015, 5, 7018-7022.	1.7	25
32	A temperature-responsive composite for adaptive microwave absorption. Chemical Engineering Journal, 2022, 427, 131746.	6.6	25
33	High-purity helical carbon nanotubes by trace-water-assisted chemical vapor deposition: Large-scale synthesis and growth mechanism. Nano Research, 2018, 11, 3327-3339.	5.8	24
34	Ultra-robust and high-toughness graphene oxide papers via synergistic strengthening by addition of carbon-nanotubes and copper ions. Carbon, 2019, 147, 490-500.	5.4	21
35	Ultrastrong Carbon Nanotubes/Graphene Papers via Multiple π–π Cross-Linking. ACS Applied Materials & Interfaces, 2020, 12, 47811-47819	4.0	21
36	Remarkable Improvement in the Mechanical Properties of Epoxy Composites Achieved by a Small Amount of Modified Helical Carbon Nanotubes. Polymers, 2018, 10, 1103.	2.0	19

FANBIN MENG

#	Article	IF	CITATIONS
37	Regenerated and rotation-induced cellulose-wrapped oriented CNT fibers for wearable multifunctional sensors. Nanoscale, 2020, 12, 16305-16314.	2.8	19
38	Coatings Comprised of Graphene Oxide Decorated with Helical Polypyrrole Nanofibers for Microwave Absorption and Corrosion Protection. ACS Applied Nano Materials, 2022, 5, 9780-9791.	2.4	10
39	Electric-field assisted growth and mechanical bactericidal performance of ZnO nanoarrays with gradient morphologies. Nanotechnology Reviews, 2019, 8, 315-326.	2.6	6
40	Porous VGCF@polyaniline nanohybrids with manipulated porous structures for effective microwave absorption. Journal of Materials Science: Materials in Electronics, 2020, 31, 12830-12841.	1.1	6
41	Cure behaviors of furfuryl alcohol/epoxy/methyltetrahydrophthalic anhydride and their enhanced mechanical and anti-acid properties of basalt fiber reinforced composites. Composites Part B: Engineering, 2018, 154, 263-271.	5.9	5
42	Polyphenylene sulfide-coated wrench composites by nanopinning effect. Nanotechnology Reviews, 2021, 10, 166-177.	2.6	3
43	A mini-review of three-dimensional network topological structure nanocomposites: Preparation and mechanical properties. Nanotechnology Reviews, 2021, 10, 1425-1437.	2.6	2
44	Preparation of TiO2 Nanotube Array on the Pure Titanium Surface by Anodization Method and Its Hydrophilicity. Scanning, 2021, 2021, 1-7.	0.7	1