
Michelle N Wykes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6202762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent trends in next generation immunoinformatics harnessed for universal coronavirus vaccine design. Pathogens and Global Health, 2023, 117, 134-151.	1.0	2
2	A Peptide-Based PD1 Antagonist Enhances T-Cell Priming and Efficacy of a Prophylactic Malaria Vaccine and Promotes Survival in a Lethal Malaria Model. Frontiers in Immunology, 2020, 11, 1377.	2.2	5
3	Crohn's disease is facilitated by a disturbance of programmed deathâ€1 ligand 2 on blood dendritic cells. Clinical and Translational Immunology, 2019, 8, e01071.	1.7	12
4	Progression of Disease Within 24 Months in Follicular Lymphoma Is Associated With Reduced Intratumoral Immune Infiltration. Journal of Clinical Oncology, 2019, 37, 3300-3309.	0.8	83
5	Immune checkpoint blockade in infectious diseases. Nature Reviews Immunology, 2018, 18, 91-104.	10.6	407
6	The Contribution of Co-signaling Pathways to Anti-malarial T Cell Immunity. Frontiers in Immunology, 2018, 9, 2926.	2.2	7
7	Adaptive Immunity to Plasmodium Blood Stages. , 2017, , 47-66.		3
8	ELISPOT Assay to Measure Peptide-specific IFN-Î ³ Production. Bio-protocol, 2017, 7, e2302.	0.2	3
9	Programmed Death-1 Ligand 2-Mediated Regulation of the PD-L1 to PD-1 Axis Is Essential for Establishing CD4 + T Cell Immunity. Immunity, 2016, 45, 333-345.	6.6	92
10	Mice lacking Programmed cell death-1 show a role for CD8+ T cells in long-term immunity against blood-stage malaria. Scientific Reports, 2016, 6, 26210.	1.6	25
11	Cytokine-Mediated Loss of Blood Dendritic Cells During Epstein-Barr Virus–Associated Acute Infectious Mononucleosis: Implication for Immune Dysregulation. Journal of Infectious Diseases, 2015, 212, 1957-1961.	1.9	22
12	Impaired Epstein-Barr Virus-Specific Neutralizing Antibody Response during Acute Infectious Mononucleosis Is Coincident with Global B-Cell Dysfunction. Journal of Virology, 2015, 89, 9137-9141.	1.5	21
13	Malaria drives T cells to exhaustion. Frontiers in Microbiology, 2014, 5, 249.	1.5	70
14	Why haven't we made an efficacious vaccine for malaria?. EMBO Reports, 2013, 14, 661-661.	2.0	14
15	PD-1 Dependent Exhaustion of CD8+ T Cells Drives Chronic Malaria. Cell Reports, 2013, 5, 1204-1213.	2.9	147
16	Long-Term Antibody Memory Induced by Synthetic Peptide Vaccination Is Protective against <i>Streptococcus pyogenes</i> Infection and Is Independent of Memory T Cell Help. Journal of Immunology, 2013, 190, 2692-2701.	0.4	41
17	Malaria infection alters the expression of <scp>B</scp> â€cell activating factor resulting in diminished memory antibody responses and survival. European Journal of Immunology, 2012, 42, 3291-3301.	1.6	38
18	The mammalian PYHIN gene family: Phylogeny, evolution and expression. BMC Evolutionary Biology, 2012, 12, 140.	3.2	168

MICHELLE N WYKES

#	Article	IF	CITATIONS
19	Dendritic cells: The Trojan horse of malaria?. International Journal for Parasitology, 2012, 42, 583-587.	1.3	9
20	Are plasmacytoid dendritic cells the misguided sentinels of malarial immunity?. Trends in Parasitology, 2012, 28, 182-186.	1.5	4
21	Rodent blood-stage <i>Plasmodium</i> survive in dendritic cells that infect naive mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11205-11210.	3.3	51
22	What have we learnt from mouse models for the study of malaria?. European Journal of Immunology, 2009, 39, 2004-2007.	1.6	59
23	A novel synthetic adjuvant enhances dendritic cell function. Immunology, 2009, 128, e582-8.	2.0	31
24	What really happens to dendritic cells during malaria?. Nature Reviews Microbiology, 2008, 6, 864-870.	13.6	79
25	Soluble CD38 significantly prolongs the lifespan of memory Bâ€cell responses. Immunology, 2008, 125, 14-20.	2.0	7
26	Systemic Tumor Necrosis Factor Generated during Lethal Plasmodium Infections Impairs Dendritic Cell Function. Journal of Immunology, 2007, 179, 3982-3987.	0.4	36
27	Plasmodium Strain Determines Dendritic Cell Function Essential for Survival from Malaria. PLoS Pathogens, 2007, 3, e96.	2.1	72
28	Dendritic cell biology during malaria. Cellular Microbiology, 2007, 9, 300-305.	1.1	20
29	A case for whole-parasite malaria vaccines. International Journal for Parasitology, 2007, 37, 705-712.	1.3	33
30	Malaria vaccines: New hope in old ideas. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 167-172.	0.5	5
31	Memory B cell responses and malaria. Parasite Immunology, 2006, 28, 31-34.	0.7	16
32	CD8+ T Lymphocyte-Mediated Loss of Marginal Metallophilic Macrophages following Infection with <i>Plasmodium chabaudi chabaudi AS</i> . Journal of Immunology, 2006, 177, 2518-2526.	0.4	42
33	Immunological Impediments to Developing a Blood Stage Malaria Vaccine. Current Immunology Reviews, 2006, 2, 371-376.	1.2	3
34	<i>Plasmodium yoelii</i> Can Ablate Vaccine-Induced Long-Term Protection in Mice. Journal of Immunology, 2005, 175, 2510-2516.	0.4	86
35	DEVELOPMENT AND REGULATION OF CELL-MEDIATED IMMUNE RESPONSES TO THE BLOOD STAGES OF MALARIA: Implications for Vaccine Research. Annual Review of Immunology, 2005, 23, 69-99.	9.5	162
36	Dendritic cells and follicular dendritic cells express a novel ligand for CD38 which influences their maturation and antibody responses. Immunology, 2004, 113, 318-327.	2.0	13

MICHELLE N WYKES

#	Article	IF	CITATIONS
37	The immunological challenge to developing a vaccine to the blood stages of malaria parasites. Immunological Reviews, 2004, 201, 254-267.	2.8	49
38	Why do B cells produce CD40 ligand?. Immunology and Cell Biology, 2003, 81, 328-331.	1.0	34
39	Regulation of CD40 function by its isoforms generated through alternative splicing. Proceedings of the United States of America, 2001, 98, 1751-1756.	3.3	132
40	Isolation of Dendritic Cells from Rat Intestinal Lymph and Spleen. , 2001, 64, 29-41.		3
41	Dendritic cell-B-cell interaction: dendritic cells provide B cells with CD40-independent proliferation signals and CD40-dependent survival signals. Immunology, 2000, 100, 1-3.	2.0	94
42	A Discrete Subpopulation of Dendritic Cells Transports Apoptotic Intestinal Epithelial Cells to T Cell Areas of Mesenteric Lymph Nodes. Journal of Experimental Medicine, 2000, 191, 435-444.	4.2	856
43	Dendritic cells, B cells and the regulation of antibody synthesis. Immunological Reviews, 1999, 172, 325-334.	2.8	78
44	Regulation of cytoplasmic, surface and soluble forms of CD40 ligand in mouse B cells. European Journal of Immunology, 1998, 28, 548-559.	1.6	72
45	Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response. Journal of Immunology, 1998, 161, 1313-9.	0.4	340
46	Observations on memory B-cell development. Seminars in Immunology, 1997, 9, 249-254.	2.7	14
47	B-T Lymphocyte Interactions in the Generation and Survival of Memory Cells. Immunological Reviews, 1996, 150, 45-61.	2.8	66
48	Murine cytomegalovirus interacts with major histocompatibility complex class I molecules to establish cellular infection. Journal of Virology, 1993, 67, 4182-4189.	1.5	31
49	The effects of β-2-microglobulin on the infectivity of murine cytomegalovirus. Archives of Virology, 1992, 123, 59-72.	0.9	13