Luciano Di Fiore

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/620261/luciano-di-fiore-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 152
 22,131
 56
 148

 papers
 citations
 h-index
 g-index

 161
 26,486
 4.6
 3.71

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
152	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. Classical and Quantum Gravity, 2022, 39, 045006	3.3	2
151	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. <i>Astrophysical Journal</i> , 2021 , 909, 218	4.7	46
150	Automated source of squeezed vacuum states driven by finite state machine based software. <i>Review of Scientific Instruments</i> , 2021 , 92, 054504	1.7	1
149	Seismic glitchness at Sos Enattos site: impact on intermediate black hole binaries detection efficiency. <i>European Physical Journal Plus</i> , 2021 , 136, 1	3.1	2
148	Advanced Virgo Status. <i>Journal of Physics: Conference Series</i> , 2020 , 1342, 012010	0.3	8
147	Stroboscopic torsion pendulum. European Journal of Physics, 2020, 41, 015801	0.8	1
146	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2020 , 23, 3	32.5	144
145	The advanced Virgo longitudinal control system for the O2 observing run. <i>Astroparticle Physics</i> , 2020 , 116, 102386	2.4	7
144	Liquid actuated gravity experiments. International Journal of Modern Physics D, 2019, 28, 1950115	2.2	
143	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. <i>Astrophysical Journal Letters</i> , 2019 , 871, L13	7.9	77
142	Improving sensitivity and duty-cycle of a double torsion pendulum. <i>Classical and Quantum Gravity</i> , 2019 , 36, 125004	3.3	2
141	Micrometeoroid Events in LISA Pathfinder. Astrophysical Journal, 2019, 883, 53	4.7	5
140	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. <i>Physical Review Letters</i> , 2019 , 123, 231108	7.4	134
139	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGOE first observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065010	3.3	62
138	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. <i>Classical and Quantum Gravity</i> , 2018 , 35, 065009	3.3	12
137	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. <i>Living Reviews in Relativity</i> , 2018 , 21, 3	32.5	543
136	Actuation crosstalk in free-falling systems: Torsion pendulum results for the engineering model of the LISA pathfinder gravitational reference sensor. <i>Astroparticle Physics</i> , 2018 , 97, 19-26	2.4	4

(2016-2018)

135	Calibration of advanced Virgo and reconstruction of the gravitational wave signal h (t) during the observing run O2. <i>Classical and Quantum Gravity</i> , 2018 , 35, 205004	3.3	35
134	Status of Advanced Virgo. <i>EPJ Web of Conferences</i> , 2018 , 182, 02003	0.3	4
133	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. <i>Physical Review D</i> , 2017 , 95,	4.9	54
132	Effects of waveform model systematics on the interpretation of GW150914. <i>Classical and Quantum Gravity</i> , 2017 , 34, 104002	3.3	74
131	On solar system dynamics in general relativity. <i>International Journal of Geometric Methods in Modern Physics</i> , 2017 , 14, 1750117	1.5	4
130	A two-stage torsion pendulum for ground testing free fall conditions on two degrees of freedom. Journal of Physics: Conference Series, 2017 , 840, 012035	0.3	
129	An optical read-out system for the LISA gravitational reference sensor: present status and perspectives <i>Journal of Physics: Conference Series</i> , 2017 , 840, 012047	0.3	2
128	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121101	7.4	137
127	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. <i>Physical Review Letters</i> , 2017 , 118, 121102	7.4	65
126	Capacitive sensing of test mass motion with nanometer precision over millimeter-wide sensing gaps for space-borne gravitational reference sensors. <i>Physical Review D</i> , 2017 , 96,	4.9	17
125	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. <i>Astrophysical Journal</i> , 2017 , 841, 89	4.7	42
124	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. <i>Physical Review D</i> , 2017 , 95,	4.9	14
123	Status of the Advanced Virgo gravitational wave detector. <i>International Journal of Modern Physics A</i> , 2017 , 32, 1744003	1.2	5
122	A two-stage torsion pendulum for ground testing free fall conditions on two degrees of freedom. <i>Nuclear and Particle Physics Proceedings</i> , 2017 , 291-293, 134-139	0.4	
121	Quantum time delay in the gravitational field of a rotating mass. <i>Classical and Quantum Gravity</i> , 2017 , 34, 165008	3.3	2
120	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 826, L13	7.9	183
119	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. <i>Physical Review D</i> , 2016 , 94,	4.9	28
118	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. <i>Physical Review D</i> , 2016 , 94,	4.9	43

117	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR B LACK HOLE MERGERS FROM ADVANCED LIGOS FIRST OBSERVING RUN. <i>Astrophysical Journal Letters</i> , 2016 , 832, L21	7.9	130
116	Directly comparing GW150914 with numerical solutions of Einstein equations for binary black hole coalescence. <i>Physical Review D</i> , 2016 , 94,	4.9	76
115	All-sky search for long-duration gravitational wave transients with initial LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	27
114	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. <i>Physical Review D</i> , 2016 , 93,	4.9	14
113	First low frequency all-sky search for continuous gravitational wave signals. <i>Physical Review D</i> , 2016 , 93,	4.9	29
112	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. <i>Physical Review D</i> , 2016 , 93,	4.9	253
111	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007 2013. <i>Physical Review D</i> , 2016 , 93,	4.9	10
110	Approaching Free Fall on Two Degrees of Freedom: Simultaneous Measurement of Residual Force and Torque on a Double Torsion Pendulum. <i>Physical Review Letters</i> , 2016 , 116, 051104	7.4	15
109	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. <i>Physical Review Letters</i> , 2016 , 116, 131102	7.4	188
108	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. <i>Physical Review Letters</i> , 2016 , 116, 131103	7.4	328
107	Observing gravitational-wave transient GW150914 with minimal assumptions. <i>Physical Review D</i> , 2016 , 93,	4.9	94
106	Tests of General Relativity with GW150914. <i>Physical Review Letters</i> , 2016 , 116, 221101	7.4	837
105	Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. <i>Physical Review Letters</i> , 2016 , 116, 231101	7.4	319
104	Properties of the Binary Black Hole Merger GW150914. <i>Physical Review Letters</i> , 2016 , 116, 241102	7.4	515
103	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. <i>Physical Review Letters</i> , 2016 , 116, 241103	7.4	2136
102	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. <i>Physical Review X</i> , 2016 , 6,	9.1	723
101	Observation of Gravitational Waves from a Binary Black Hole Merger. <i>Physical Review Letters</i> , 2016 , 116, 061102	7.4	6108
100	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. <i>Physical Review X</i> , 2016 , 6,	9.1	89

(2014-2016)

99	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. <i>Physical Review D</i> , 2016 , 94,	4.9	29
98	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. <i>Astrophysical Journal Letters</i> , 2016 , 833, L1	7.9	209
97	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. <i>Physical Review D</i> , 2015 , 91,	4.9	26
96	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. <i>Physical Review D</i> , 2015 , 91,	4.9	38
95	Characterization of the LIGO detectors during their sixth science run. <i>Classical and Quantum Gravity</i> , 2015 , 32, 115012	3.3	790
94	The Advanced Virgo detector. <i>Journal of Physics: Conference Series</i> , 2015 , 610, 012014	0.3	18
93	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. <i>Astrophysical Journal</i> , 2015 , 813, 39	4.7	58
92	Advanced Virgo: a second-generation interferometric gravitational wave detector. <i>Classical and Quantum Gravity</i> , 2015 , 32, 024001	3.3	1567
91	Earth-moon Lagrangian points as a test bed for general relativity and effective field theories of gravity. <i>Physical Review D</i> , 2015 , 92,	4.9	12
90	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. <i>Physical Review D</i> , 2015 , 91,	4.9	32
89	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. <i>Classical and Quantum Gravity</i> , 2014 , 31, 165014	3.3	27
88	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. <i>Astrophysical Journal</i> , 2014 , 785, 119	4.7	109
87	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. <i>Classical and Quantum Gravity</i> , 2014 , 31, 115004	3.3	34
86	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005\(\textbf{Q} 010. \) Physical Review D, 2014 , 89,	4.9	26
85	Search for gravitational waves associated with Fray bursts detected by the interplanetary network. <i>Physical Review Letters</i> , 2014 , 113, 011102	7.4	30
84	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. <i>Physical Review D</i> , 2014 , 89,	4.9	32
83	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. <i>Physical Review D</i> , 2014 , 89,	4.9	25
82	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. <i>Classical and Quantum Gravity</i> , 2014 , 31, 165013	3.3	8

81	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014 , 211, 7	8	51
80	First all-sky search for continuous gravitational waves from unknown sources in binary systems. <i>Physical Review D</i> , 2014 , 90,	4.9	54
79	Towards weighing the condensation energy to ascertain the Archimedes force of vacuum. <i>Physical Review D</i> , 2014 , 90,	4.9	16
78	Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. <i>Physical Review Letters</i> , 2014 , 112, 131101	7.4	59
77	Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data. <i>Physical Review Letters</i> , 2014 , 113, 231101	7.4	74
76	Quasi-completeImechanical model for a double torsion pendulum. <i>Physical Review D</i> , 2013 , 87,	4.9	9
75	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. <i>Physical Review D</i> , 2013 , 88,	4.9	30
74	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. <i>Classical and Quantum Gravity</i> , 2013 , 30, 055017	3.3	9
73	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. <i>Physical Review D</i> , 2013 , 87,	4.9	84
72	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. <i>Physical Review D</i> , 2013 , 88,	4.9	122
71	Directed search for continuous gravitational waves from the Galactic center. <i>Physical Review D</i> , 2013 , 88,	4.9	57
70	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. <i>Physical Review D</i> , 2012 , 85,	4.9	96
69	Search for gravitational waves from intermediate mass binary black holes. <i>Physical Review D</i> , 2012 , 85,	4.9	46
68	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600¶000 Hz. <i>Physical Review D</i> , 2012 , 85,	4.9	40
67	Search for gravitational waves from low mass compact binary coalescence in LIGOE sixth science run and VirgoE science runs 2 and 3. <i>Physical Review D</i> , 2012 , 85,	4.9	172
66	All-sky search for periodic gravitational waves in the full S5 LIGO data. <i>Physical Review D</i> , 2012 , 85,	4.9	61
65	Publisher Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D 82, 102001 (2010)]. <i>Physical Review D</i> , 2012 , 85,	4.9	2
64	Virgo: a laser interferometer to detect gravitational waves. <i>Journal of Instrumentation</i> , 2012 , 7, P0301	2- <u>R</u> 030	1212

63	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005	3.3	4
62	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28	8	57
61	The characterization of Virgo data and its impact on gravitational-wave searches. <i>Classical and Quantum Gravity</i> , 2012 , 29, 155002	3.3	59
60	Publisher Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81, 102001 (2010)]. <i>Physical Review D</i> , 2012 , 85,	4.9	3
59	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. <i>Astronomy and Astrophysics</i> , 2012 , 541, A155	5.1	69
58	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. <i>Astrophysical Journal</i> , 2012 , 760, 12	4.7	94
57	The NoEMi (Noise Frequency Event Miner) framework. <i>Journal of Physics: Conference Series</i> , 2012 , 363, 012037	0.3	10
56	Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts. <i>Astronomy and Astrophysics</i> , 2012 , 539, A124	5.1	71
55	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. <i>International Journal of Modern Physics D</i> , 2011 , 20, 2075-2079	2.2	4
54	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. <i>Journal of Low Frequency Noise Vibration and Active Control</i> , 2011 , 30, 63-79	1.5	19
53	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. <i>Astrophysical Journal Letters</i> , 2011 , 734, L35	7.9	47
52	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. <i>Astrophysical Journal</i> , 2011 , 737, 93	4.7	75
51	Automatic Alignment system during the second science run of the Virgo interferometer. <i>Astroparticle Physics</i> , 2011 , 34, 327-332	2.4	5
50	Performance of the Virgo interferometer longitudinal control system during the second science run. <i>Astroparticle Physics</i> , 2011 , 34, 521-527	2.4	10
49	An optical readout system for the drag free control of the LISA spacecraft. <i>Astroparticle Physics</i> , 2011 , 34, 394-400	2.4	17
48	Sensitivity studies for third-generation gravitational wave observatories. <i>Classical and Quantum Gravity</i> , 2011 , 28, 094013	3.3	382
47	Calibration and sensitivity of the Virgo detector during its second science run. <i>Classical and Quantum Gravity</i> , 2011 , 28, 025005	3.3	83
46	A state observer for the Virgo inverted pendulum. <i>Review of Scientific Instruments</i> , 2011 , 82, 094502	1.7	6

45	Directional limits on persistent gravitational waves using LIGO S5 science data. <i>Physical Review Letters</i> , 2011 , 107, 271102	7.4	85
44	Status of the Virgo project. <i>Classical and Quantum Gravity</i> , 2011 , 28, 114002	3.3	140
43	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. <i>Astrophysical Journal</i> , 2010 , 713, 671-685	4.7	140
42	The Einstein Telescope: a third-generation gravitational wave observatory. <i>Classical and Quantum Gravity</i> , 2010 , 27, 194002	3.3	675
41	Noise from scattered light in Virgo's second science run data. <i>Classical and Quantum Gravity</i> , 2010 , 27, 194011	3.3	31
40	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. <i>Physical Review D</i> , 2010 , 82,	4.9	100
39	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. <i>Physical Review D</i> , 2010 , 81,	4.9	81
38	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. <i>Classical and Quantum Gravity</i> , 2010 , 27, 173001	3.3	869
37	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. <i>Astrophysical Journal</i> , 2010 , 715, 1453	3- 1 :461	79
36	The 2 Degrees of Freedom facility in Firenze for the study of weak forces. <i>Journal of Physics:</i> Conference Series, 2010 , 228, 012037	0.3	5
35	Tools for noise characterization in Virgo. Journal of Physics: Conference Series, 2010, 243, 012004	0.3	
34	Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1. <i>Journal of Physics: Conference Series</i> , 2010 , 228, 012015	0.3	7
33	Status and perspectives of the Virgo gravitational wave detector. <i>Journal of Physics: Conference Series</i> , 2010 , 203, 012074	0.3	22
32	Measurements of Superattenuator seismic isolation by Virgo interferometer. <i>Astroparticle Physics</i> , 2010 , 33, 182-189	2.4	54
31	Automatic Alignment for the first science run of the Virgo interferometer. <i>Astroparticle Physics</i> , 2010 , 33, 131-139	2.4	10
30	2009,		1
29	Laser with an in-loop relative frequency stability of 1.0🛮 0 🗷 1 on a 100-ms time scale for gravitational-wave detection. <i>Physical Review A</i> , 2009 , 79,	2.6	6
28	Cleaning the Virgo sampled data for the search of periodic sources of gravitational waves. <i>Classical and Quantum Gravity</i> , 2009 , 26, 204002	3.3	5

27	Gravitational wave burst search in the Virgo C7 data. Classical and Quantum Gravity, 2009, 26, 085009	3.3	15
26	An upper limit on the stochastic gravitational-wave background of cosmological origin. <i>Nature</i> , 2009 , 460, 990-4	50.4	267
25	Ground testing, with a four mass torsion pendulum facility, of an optical-read-out for the LISA gravitational reference sensor. <i>Journal of Physics: Conference Series</i> , 2009 , 154, 012012	0.3	4
24	The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves. <i>IEEE Transactions on Nuclear Science</i> , 2008 , 55, 302-310	1.7	4
23	First joint gravitational wave search by the AURIGAEXPLORERNAUTILUSN irgo Collaboration. Classical and Quantum Gravity, 2008 , 25, 205007	3.3	11
22	The Virgo 3 km interferometer for gravitational wave detection. <i>Journal of Optics</i> , 2008 , 10, 064009		29
21	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. <i>Classical and Quantum Gravity</i> , 2008 , 25, 114046	3.3	
20	Search for gravitational waves associated with GRB 050915a using the Virgo detector. <i>Classical and Quantum Gravity</i> , 2008 , 25, 225001	3.3	23
19	Status of Virgo. Classical and Quantum Gravity, 2008, 25, 114045	3.3	115
18	Virgo status. Classical and Quantum Gravity, 2008 , 25, 184001	3.3	110
18	Virgo status. Classical and Quantum Gravity, 2008 , 25, 184001 Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008 , 25, 1840		110
17	Noise studies during the first Virgo science run and after. <i>Classical and Quantum Gravity</i> , 2008 , 25, 1840 Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. <i>IEEE</i>	0033	6
17 16	Noise studies during the first Virgo science run and after. <i>Classical and Quantum Gravity</i> , 2008 , 25, 1840 Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. <i>IEEE Transactions on Nuclear Science</i> , 2008 , 55, 225-232 VIRGO: a large interferometer for gravitational wave detection started its first scientific run.	00 3 3	6
17 16 15	Noise studies during the first Virgo science run and after. <i>Classical and Quantum Gravity</i> , 2008 , 25, 1840 Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. <i>IEEE Transactions on Nuclear Science</i> , 2008 , 55, 225-232 VIRGO: a large interferometer for gravitational wave detection started its first scientific run. <i>Journal of Physics: Conference Series</i> , 2008 , 120, 032007	0033 1.7 0.3	6 3 15
17 16 15	Noise studies during the first Virgo science run and after. <i>Classical and Quantum Gravity</i> , 2008 , 25, 1840 Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. <i>IEEE Transactions on Nuclear Science</i> , 2008 , 55, 225-232 VIRGO: a large interferometer for gravitational wave detection started its first scientific run. <i>Journal of Physics: Conference Series</i> , 2008 , 120, 032007 Lock acquisition of the Virgo gravitational wave detector. <i>Astroparticle Physics</i> , 2008 , 30, 29-38 Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a.	0.3	6 3 15
17 16 15 14	Noise studies during the first Virgo science run and after. <i>Classical and Quantum Gravity</i> , 2008 , 25, 1840 Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector. <i>IEEE Transactions on Nuclear Science</i> , 2008 , 55, 225-232 VIRGO: a large interferometer for gravitational wave detection started its first scientific run. <i>Journal of Physics: Conference Series</i> , 2008 , 120, 032007 Lock acquisition of the Virgo gravitational wave detector. <i>Astroparticle Physics</i> , 2008 , 30, 29-38 Gravitational waves by gamma-ray bursts and the Virgo detector: the case of GRB 050915a. <i>Classical and Quantum Gravity</i> , 2007 , 24, S671-S679 Coincidence analysis between periodic source candidates in C6 and C7 Virgo data. <i>Classical and</i>	0.3	6 3 15 13

9	Status of Virgo detector. Classical and Quantum Gravity, 2007, 24, S381-S388	3.3	51
8	Status of coalescing binaries search activities in Virgo. Classical and Quantum Gravity, 2007, 24, 5767-57	77 5 3	8
7	The variable finesse locking technique. Classical and Quantum Gravity, 2006, 23, S85-S89	3.3	19
6	Virgo upgrade investigations. <i>Journal of Physics: Conference Series</i> , 2006 , 32, 223-229	0.3	19
5	Measurement of the seismic attenuation performance of the VIRGO Superattenuator. <i>Astroparticle Physics</i> , 2005 , 23, 557-565	2.4	69
4	A simple line detection algorithm applied to Virgo data. <i>Classical and Quantum Gravity</i> , 2005 , 22, S1189)-S ₃ 13196	5 5
3	An optical readout system for the drag-free control of LISA. <i>Classical and Quantum Gravity</i> , 2005 , 22, S279-S285	3.3	12
2	First locking of the Virgo central area interferometer with suspension hierarchical control. <i>Astroparticle Physics</i> , 2004 , 20, 629-640	2.4	12
1	An improvement in the VIRGO Super Attenuator for interferometric detection of gravitational waves: The use of a magnetic antispring. <i>Review of Scientific Instruments</i> , 1993 , 64, 310-313	1.7	27