
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6202223/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Absolute Stereostructure of Potent α-Glucosidase Inhibitor, Salacinol, with Unique Thiosugar Sulfonium Sulfate Inner Salt Structure from Salacia reticulata. Bioorganic and Medicinal Chemistry, 2002, 10, 1547-1554.	3.0	206
2	Salaprionol and Ponkoranol with Thiosugar Sulfonium Sulfate Structure from Salacia prinoides and a-Glucosidase Inhibitory Activity of Ponkoranol and Kotalanol Desulfate. Heterocycles, 2008, 75, 1397.	0.7	74
3	Isolation, structure identification and SAR studies on thiosugar sulfonium salts, neosalaprinol and neoponkoranol, as potent α-glucosidase inhibitors. Bioorganic and Medicinal Chemistry, 2011, 19, 2015-2022.	3.0	68
4	Biological evaluation of de-O-sulfonated analogs of salacinol, the role of sulfate anion in the side chain on the α-glucosidase inhibitory activity. Bioorganic and Medicinal Chemistry, 2007, 15, 3926-3937.	3.0	66
5	On the structure of the bioactive constituent from ayurvedic medicine Salacia reticulata: revision of the literature. Tetrahedron Letters, 2008, 49, 7315-7317.	1.4	61
6	Synthesis and biological evaluation of deoxy salacinols, the role of polar substituents in the side chain on the α-glucosidase inhibitory activity. Bioorganic and Medicinal Chemistry, 2006, 14, 500-509.	3.0	57
7	Facile synthesis of de-O-sulfated salacinols: Revision of the structure of neosalacinol, a potent α-glucosidase inhibitor. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2195-2198.	2.2	45
8	Salacinol and Related Analogs: New Leads for Type 2 Diabetes Therapeutic Candidates from the Thai Traditional Natural Medicine Salacia chinensis. Nutrients, 2015, 7, 1480-1493.	4.1	40
9	Structural Basis of Protein–Protein Interactions between a <i>trans</i> -Acting Acyltransferase and Acyl Carrier Protein in Polyketide Disorazole Biosynthesis. Journal of the American Chemical Society, 2018, 140, 7970-7978.	13.7	40
10	Quantitative Determination of Alkaloids in Lotus Flower (Flower Buds of Nelumbo nucifera) and Their Melanogenesis Inhibitory Activity. Molecules, 2016, 21, 930.	3.8	37
11	Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model. Toxicology and Applied Pharmacology, 2016, 306, 105-112.	2.8	36
12	In silico design, synthesis and evaluation of 3′-O-benzylated analogs of salacinol, a potent α-glucosidase inhibitor isolated from an Ayurvedic traditional medicine "Salacia― Chemical Communications, 2012, 48, 8646.	4.1	29
13	Mangiferin induces apoptosis in multiple myeloma cell lines by suppressing the activation of nuclear factor kappa B-inducing kinase. Chemico-Biological Interactions, 2016, 251, 26-33.	4.0	29
14	Biological evaluation of 3â€2-O-alkylated analogs of salacinol, the role of hydrophobic alkyl group at 3â€2 position in the side chain on the α-glucosidase inhibitory activity. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3159-3162.	2.2	27
15	Synthesis of Azepines via a [6 + 1] Annulation of Ynenitriles with Reformatsky Reagents. Journal of Organic Chemistry, 2015, 80, 9480-9494.	3.2	22
16	Evaluation of <i>Salacia</i> Species as Anti-diabetic Natural Resources Based on Quantitative Analysis of Eight Sulphonium Constituents: A New Class of α-Glucosidase Inhibitors. Phytochemical Analysis, 2014, 25, 544-550.	2.4	21
17	Identification of <scp>ACA</scp> â€28, a 1′â€acetoxychavicol acetate analogue compound, as a novel modulator of <scp>ERK MAPK</scp> signaling, which preferentially kills human melanoma cells. Genes To Cells, 2017, 22, 608-618.	1.2	19
18	Diastereoselective Synthesis of Salacinol-Type α-Glucosidase Inhibitors. Journal of Organic Chemistry, 2018, 83, 185-193.	3.2	17

#	Article	IF	CITATIONS
19	Design, synthesis and biological evaluation of 3′-benzylated analogs of 3′-epi-neoponkoranol as potent α-glucosidase inhibitors. European Journal of Medicinal Chemistry, 2016, 110, 224-236.	5.5	16
20	A review of antidiabetic active thiosugar sulfoniums, salacinol and neokotalanol, from plants of the genus Salacia. Journal of Natural Medicines, 2021, 75, 449-466.	2.3	16
21	Construction of 3,6-Anhydrohexosides via Intramolecular Cyclization of Triflates and Its Application to the Synthesis of Natural Product Isolated from Leaves of <i>Sauropus rostratus</i> . Organic Letters, 2014, 16, 5004-5007.	4.6	15
22	An Engineered Aryl Acid Adenylation Domain with an Enlarged Substrate Binding Pocket. Angewandte Chemie - International Edition, 2019, 58, 6906-6910.	13.8	15
23	Chemoproteomics profiling of surfactin-producing nonribosomal peptide synthetases in living bacterial cells. Cell Chemical Biology, 2022, 29, 145-156.e8.	5.2	14
24	Total Synthesis of 4,5-Didehydroguadiscine: A Potent Melanogenesis Inhibitor from the Brazilian Medicinal Herb, <i>Hornschuchia obliqua</i> . Journal of Natural Products, 2015, 78, 1536-1542.	3.0	13
25	Role of the side chain stereochemistry in the α-glucosidase inhibitory activity of kotalanol, a potent natural α-glucosidase inhibitor. Part 2. Bioorganic and Medicinal Chemistry, 2012, 20, 6321-6334.	3.0	12
26	Hydrophobic substituents increase the potency of salacinol, a potent α-glucosidase inhibitor from Ayurvedic traditional medicine â€ ⁻ Salacia'. Bioorganic and Medicinal Chemistry, 2016, 24, 3705-3715.	3.0	12
27	Practical Route to Neokotalanol and Its Natural Analogues: Sulfonium Sugars with Antidiabetic Activities. Angewandte Chemie - International Edition, 2019, 58, 6400-6404.	13.8	12
28	Total Synthesis of γ-Alkylidenebutenolides, Potent Melanogenesis Inhibitors from Thai Medicinal Plant <i>Melodorum fruticosum</i> . Journal of Organic Chemistry, 2018, 83, 8250-8264.	3.2	11
29	Precise Probing of Residue Roles by NRPS Code Swapping: Mutation, Enzymatic Characterization, Modeling, and Substrate Promiscuity of Aryl Acid Adenylation Domains. Biochemistry, 2020, 59, 351-363.	2.5	10
30	Structure–activity relationship studies on acremomannolipin A, the potent calcium signal modulator with a novel glycolipid structure 2: Role of the alditol side chain stereochemistry. Bioorganic and Medicinal Chemistry, 2014, 22, 945-959.	3.0	9
31	Highly Diastereoselective Route to α-Glucosidase Inhibitors, Neosalacinol and Neoponkoranol. Journal of Organic Chemistry, 2016, 81, 3407-3415.	3.2	9
32	Design, Synthesis and Biological Evaluation of Nitrate Derivatives of Sauropunol A and B as Potent Vasodilatory Agents. Molecules, 2019, 24, 583.	3.8	9
33	Total synthesis of neokotalanol, a potent α-glucosidase inhibitor isolated from Salacia reticulata. Chinese Journal of Natural Medicines, 2013, 11, 676-683.	1.3	7
34	Total synthesis, structural elucidation and anti-inflammatory activity evaluation of 2-deoxy-3,6-anhydro hexofuranoside derivatives isolated from Sauropus rostratus. Organic and Biomolecular Chemistry, 2016, 14, 10906-10913.	2.8	7
35	Mutational Biosynthesis of Hitachimycin Analogs Controlled by the β-Amino Acid–Selective Adenylation Enzyme HitB. ACS Chemical Biology, 2021, 16, 539-547.	3.4	7
36	The first isolation and characterization of sulfonylbuta-1,3-diynes. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 1413-1416.	1.3	6

#	Article	IF	CITATIONS
37	Visualizing the Adenylation Activities and Protein–Protein Interactions of Aryl Acid Adenylating Enzymes. ChemBioChem, 2017, 18, 2199-2204.	2.6	6
38	First Total Syntheses of Amorfrutin C and pseudoâ€Amorfrutin A. European Journal of Organic Chemistry, 2018, 2018, 1443-1448.	2.4	6
39	Discovery of new benzhydrol biscarbonate esters as potent and selective apoptosis inducers of human melanomas bearing the activated ERK pathway: SAR studies on an ERK MAPK signaling modulator, ACA-28. Bioorganic Chemistry, 2020, 103, 104137.	4.1	6
40	Furan-2(3H)- and -2(5H)-ones. Part 6. Di-π-methane rearrangement of the α-substituted 4-benzylfuran-2(5H)-one system. Journal of the Chemical Society Perkin Transactions 1, 1995, , 1437-1443.	0.9	5
41	ACAGT-007a, an ERK MAPK Signaling Modulator, in Combination with AKT Signaling Inhibition Induces Apoptosis in KRAS Mutant Pancreatic Cancer T3M4 and MIA-Pa-Ca-2 Cells. Cells, 2022, 11, 702.	4.1	5
42	Practical Synthesis of Neoponkoranol and its Related Sulfonium Salt, an Optimised Protocol using Isopropylidene as an Effective Protecting Group. Journal of Chemical Research, 2013, 37, 715-719.	1.3	4
43	Chemical Strategies for Visualizing and Analyzing Endogenous Nonribosomal Peptide Synthetase (NRPS) Megasynthetases. ChemBioChem, 2019, 20, 2032-2040.	2.6	4
44	Facile Synthesis of Neokotalanol, a Potent α-glycosidase Inhibitor Isolated from the Ayurvedic Traditional Medicine " <i>Salacia</i> ― ACS Omega, 2019, 4, 7533-7542.	3.5	4
45	Downâ€regulation of dualâ€specificity phosphatase 6, a negative regulator of oncogenic ERK signaling, by ACAâ€28 induces apoptosis in NIH/3T3 cells overexpressing HER2/ErbB2. Genes To Cells, 2021, 26, 109-116.	1.2	4
46	Elongation of the side chain by linear alkyl groups increases the potency of salacinol, a potent α-glucosidase inhibitor from the Ayurvedic traditional medicine "Salacia,―against human intestinal maltase. Bioorganic and Medicinal Chemistry Letters, 2021, 33, 127751.	2.2	4
47	Developing crosslinkers specific for epimerization domain in NRPS initiation modules to evaluate mechanism. RSC Chemical Biology, 2022, 3, 312-319.	4.1	4
48	Structure–activity relationship studies on acremomannolipin A, the potent calcium signal modulator with a novel glycolipid structure 3: Role of the length of alditol side chain. Bioorganic and Medicinal Chemistry, 2015, 23, 3761-3773.	3.0	3
49	Unprecedented nucleophile-promoted 1,7-S or Se shift reactions under Pummerer reaction conditions of 4-alkenyl-3-sulfinylmethylpyrroles. Beilstein Journal of Organic Chemistry, 2018, 14, 2722-2729.	2.2	3
50	Probing the Compatibility of an Enzyme‣inked Immunosorbent Assay toward the Reprogramming of Nonribosomal Peptide Synthetase Adenylation Domains. ChemBioChem, 2020, 21, 3056-3061.	2.6	3
51	Ligand compatibility of salacinol-type α-glucosidase inhibitors toward the GH31 family. RSC Advances, 2021, 11, 3221-3225.	3.6	3
52	Inhibition of efflux pumps aids small-molecule probe-based fluorescence labeling and imaging in the Gram-negative bacterium <i>Escherichia coli</i> . Organic and Biomolecular Chemistry, 2021, 19, 8906-8911.	2.8	3
53	A Chemoproteomics Approach to Investigate Phosphopantetheine Transferase Activity at the Cellular Level. ChemBioChem, 2017, 18, 1855-1862.	2.6	2
54	Activity-Based Protein Profiling of Non-ribosomal Peptide Synthetases. Current Topics in Microbiology and Immunology, 2018, 420, 321-349.	1.1	2

#	Article	IF	CITATIONS
55	Practical Route to Neokotalanol and Its Natural Analogues: Sulfonium Sugars with Antidiabetic Activities. Angewandte Chemie, 2019, 131, 6466-6470.	2.0	1
56	Divergent Synthesis of Decahydroquinolineâ€Type Poisonâ€Frog Alkaloids. ChemistrySelect, 2022, 7, .	1.5	1
57	Activity-based protein profiling of a surfactin-producing nonribosomal peptide synthetase in Bacillus subtilis. STAR Protocols, 2022, 3, 101462.	1.2	1
58	Structure–activity relationship studies on acremomannolipin A, the potent calcium signal modulator with a novel glycolipid structure 4: Role of acyl side chains on d-mannose. European Journal of Medicinal Chemistry, 2016, 121, 250-271.	5.5	0
59	Expanding the Scope of Functionalized Small Nonprotein Components for Holoabzyme 27C1. ChemistrySelect, 2018, 3, 9313-9317.	1.5	0
60	An Engineered Aryl Acid Adenylation Domain with an Enlarged Substrate Binding Pocket. Angewandte Chemie, 2019, 131, 6980-6984.	2.0	0
61	Activity, Binding, and Modeling Studies of a Reprogrammed Aryl Acid Adenylation Domain with an Folarged Substrate Binding Pocket. Chemical and Pharmaceutical Bulletin, 2021, 69, 222-225.	1.3	0