Nisar Ahmed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6202041/publications.pdf

Version: 2024-02-01

304368 360668 1,355 49 22 h-index citations papers

g-index 64 64 64 1530 docs citations times ranked citing authors all docs

35

#	Article	ΙF	CITATIONS
1	Renewable Electricity Enables Green Routes to Fine Chemicals and Pharmaceuticals. Chemical Record, 2022, 22, e202100296.	2.9	9
2	Câ^'H Bond Functionalization under Electrochemical Flow Conditions. Chemical Record, 2022, 22, e202100338.	2.9	12
3	Organic synthesis <i>via</i> Kolbe and related non-Kolbe electrolysis: an enabling electro-strategy. Reaction Chemistry and Engineering, 2021, 6, 1342-1366.	1.9	13
4	Câ€"H Functionalization via Electrophotocatalysis and Photoelectrochemistry: Complementary Synthetic Approach. ACS Sustainable Chemistry and Engineering, 2021, 9, 4324-4340.	3.2	29
5	Green Chemistry: Electrochemical Organic Transformations via Paired Electrolysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 6148-6169.	3.2	80
6	Sonoelectrochemistry: Ultrasound-assisted Organic Electrosynthesis. ACS Sustainable Chemistry and Engineering, 2021, 9, 9590-9603.	3.2	9
7	Modification strategies for improving the solubility/dispersion of carbon nanotubes. Journal of Molecular Liquids, 2020, 297, 111919.	2.3	68
8	Electrochemical Phosphorylation of Organic Molecules. Chemical Record, 2020, 20, 1530-1552.	2.9	35
9	Digitising chemical synthesis in automated and robotic flow. Chemical Science, 2020, 11, 11973-11988.	3.7	26
10	Memory of chirality in a room temperature flow electrochemical reactor. Scientific Reports, 2020, 10, 16627.	1.6	7
11	Electrifying green synthesis: recent advances in electrochemical annulation reactions. Green Chemistry, 2020, 22, 4849-4870.	4.6	89
12	Interfacial Photoelectrochemical Catalysis: Solarâ€Induced Green Synthesis of Organic Molecules. ChemSusChem, 2020, 13, 1967-1973.	3.6	32
13	Organic electrosynthesis: electrochemical alkyne functionalization. Catalysis Science and Technology, 2019, 9, 5868-5881.	2.1	49
14	Meet Our Associate Editorial Board Member. Current Organic Chemistry, 2019, 23, 975-975.	0.9	0
15	Recent Advances in Electrochemical Chalcogen (S/Se)â€Functionalization of Organic Molecules. ChemElectroChem, 2019, 6, 5928-5940.	1.7	55
16	Memory of Chirality in Flow Electrochemistry: Fast Optimisation with DoE and Online 2Dâ€HPLC. Chemistry - A European Journal, 2019, 25, 16230-16235.	1.7	34
17	Diabetes Treatment: Selective Synthetic Receptor for Glucose. ChemistryOpen, 2019, 8, 84-86.	0.9	5
18	Flow Electrochemical Cyclizations via Amidyl Radicals: Easy Access to Cyclic Ureas. SynOpen, 2019, 03, 46-48.	0.8	12

#	Article	IF	CITATIONS
19	Electrochemical Sensing of Ascorbic Acid, Hydrogen Peroxide and Glucose by Bimetallic (Fe, Ni)â^'CNTs Composite Modified Electrode. Electroanalysis, 2019, 31, 851-857.	1.5	16
20	Easy Access to Crystalline Indolines <i>via</i> Hydrogen Bond Transfer. Journal of Heterocyclic Chemistry, 2019, 56, 1388-1392.	1.4	1
21	A Green Approach: Vicinal Oxidative Electrochemical Alkene Difunctionalization. ChemElectroChem, 2019, 6, 1300-1315.	1.7	61
22	Efficient Electrosynthesis of Thiazolidinâ€2â€imines via Oxysulfurization of Thioureaâ€Tethered Terminal Alkenes Using the Flow Microreactor. European Journal of Organic Chemistry, 2019, 2019, 1371-1376.	1.2	32
23	A Green Approach: Vicinal Oxidative Electrochemical Alkene Difunctionalization. ChemElectroChem, 2019, 6, 1254-1254.	1.7	2
24	Radical Diazidation of Alkenes: Cu/Fe/Mn Catalysis and Electrochemical Support. ChemElectroChem, 2018, 5, 1245-1248.	1.7	6
25	Peptide Bond Formations through Flow Chemistry. Chemical Biology and Drug Design, 2018, 91, 647-650.	1.5	16
26	Chemical Glycosylations for the Synthesis of Building Units of Postâ€Translational Modifications. Helvetica Chimica Acta, 2018, 101, e1700226.	1.0	1
27	Charged probes: turn-on selective fluorescence for RNA. Organic and Biomolecular Chemistry, 2018, 16, 164-168.	1.5	7
28	Synthesis, design and sensing applications of nanostructured ceria-based materials. Analyst, The, 2018, 143, 5610-5628.	1.7	27
29	Turn-on and Turn-off Fluorescent Probes for Carbon Monoxide Detection and Blood Carboxyhemoglobin Determination. ACS Sensors, 2018, 3, 1102-1108.	4.0	44
30	Advances in electro- and sono-microreactors for chemical synthesis. RSC Advances, 2018, 8, 22233-22249.	1.7	27
31	Memory of Chirality as a Prominent Pathway for the Synthesis of Natural Products through Chiral Intermediates. ChemistryOpen, 2018, 7, 484-487.	0.9	8
32	Facile Electrochemical Intramolecular Amination of Urea†Tethered Terminal Alkenes for the Synthesis of Cyclic Ureas. ChemistryOpen, 2018, 7, 576-582.	0.9	16
33	Facile Synthesis of a Selective Biomolecule Chemosensor and Fabrication of Its Highly Fluorescent Graphene Complex. Journal of Physical Chemistry B, 2017, 121, 5007-5016.	1.2	11
34	Halides with Fifteen Aliphatic C–H··Anion Interaction Sites. Scientific Reports, 2016, 6, 30123.	1.6	7
35	A new selective †turn-on' small fluorescent cationic probe for recognition of RNA in cells. Supramolecular Chemistry, 2015, 27, 478-483.	1.5	9
36	Desymmetrization of myo-inositol derivatives by lanthanide catalyzed phosphitylation with C2-symmetric phosphites. Bioorganic and Medicinal Chemistry, 2015, 23, 2854-2861.	1.4	9

#	Article	IF	CITATIONS
37	Phosphate esters and anhydrides – recent strategies targeting nature's favoured modifications. Organic and Biomolecular Chemistry, 2014, 12, 3526-3530.	1.5	46
38	Precise Tuning of Cationic Cyclophanes toward Highly Selective Fluorogenic Recognition of Specific Biophosphate Anions. Organic Letters, 2014, 16, 2150-2153.	2.4	49
39	A simple pyrene-based highly sensitive turn-on fluorescent chemodosimeter for Hg2+. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 77, 75-81.	0.9	6
40	Solution-processable conductive micro-hydrogels of nanoparticle/graphene platelets produced by reversible self-assembly and aqueous exfoliation. Journal of Materials Chemistry A, 2013, 1, 12900.	5.2	18
41	Selective detection of guanosine-5′-triphosphate and iodide by fluorescent benzimidazolium-based cyclophanes. Organic and Biomolecular Chemistry, 2013, 11, 6407.	1.5	39
42	Selective Fluorescent Detection of RNA in Living Cells by Using Imidazolium-Based Cyclophane. Journal of the American Chemical Society, 2013, 135, 90-93.	6.6	95
43	Fluorogenic sensing of CH3CO2â^' and H2PO4â^' by ditopic receptor through conformational change. Organic and Biomolecular Chemistry, 2012, 10, 2094.	1.5	21
44	A highly selective fluorescent chemosensor for guanosine-5′-triphosphate via excimer formation in aqueous solution of physiological pH. Chemical Communications, 2012, 48, 2662.	2.2	67
45	An Imidazoliumâ€Based Fluorescent Cyclophane for the Selective Recognition of Iodide. Chemistry - an Asian Journal, 2012, 7, 658-663.	1.7	28
46	Fluorescent Imidazolium-Based Cyclophane for Detection of Guanosine-5′-triphosphate and I [–] in Aqueous Solution of Physiological pH. Organic Letters, 2011, 13, 5476-5479.	2.4	74
47	<i>cyclo</i> â€Bis(ureaâ€3,6â€dichlorocarbazole) as a Chromogenic and Fluorogenic Receptor for Anions and a Selective Sensor of Zinc and Copper Cations. Chemistry - A European Journal, 2011, 17, 8542-8548.	1.7	36
48	Caragin, a new isoflavone from Caragana conferta. Journal of Asian Natural Products Research, 2008, 10, 823-825.	0.7	10
49	C-H Activation/Functionalization via Metalla-Electrocatalysis. , 0, , .		1