Dilek Odaci Demirkol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6201865/publications.pdf

Version: 2024-02-01

86 papers 2,203 citations

30 h-index 265206 42 g-index

86 all docs 86 docs citations

86 times ranked 2606 citing authors

#	Article	IF	CITATIONS
1	Current trends in the development of conducting polymers-based biosensors. TrAC - Trends in Analytical Chemistry, 2019, 118, 264-276.	11.4	111
2	Polypeptide Functional Surface for the Aptamer Immobilization: Electrochemical Cocaine Biosensing. Analytical Chemistry, 2016, 88, 4161-4167.	6.5	91
3	Nanostructured Amphiphilic Star-Hyperbranched Block Copolymers for Drug Delivery. Langmuir, 2015, 31, 4542-4551.	3.5	60
4	Modification of polysulfones by click chemistry: Amphiphilic graft copolymers and their protein adsorption and cell adhesion properties. Journal of Polymer Science Part A, 2011, 49, 110-117.	2.3	58
5	PAMAM-functionalized water soluble quantum dots for cancer cell targeting. Journal of Materials Chemistry, 2012, 22, 11529.	6.7	52
6	Peptide-modified conducting polymer as a biofunctional surface: monitoring of cell adhesion and proliferation. RSC Advances, 2014, 4, 53411-53418.	3.6	52
7	Ferrocene-Functionalized 4-(2,5-Di(thiophen-2-yl)-1H-pyrrol-1-yl)aniline: A Novel Design in Conducting Polymer-Based Electrochemical Biosensors. Sensors, 2015, 15, 1389-1403.	3.8	52
8	Biofunctional quantum dots as fluorescence probe for cell-specific targeting. Colloids and Surfaces B: Biointerfaces, 2014, 114, 96-103.	5.0	51
9	An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite. Applied Surface Science, 2018, 444, 542-551.	6.1	50
10	Chitosan–ferrocene film as a platform for flow injection analysis applications of glucose oxidase and Gluconobacter oxydans biosensors. Colloids and Surfaces B: Biointerfaces, 2012, 100, 62-68.	5.0	48
11	Gold nanoparticle modified conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrole-1-l) benzenamine for potential use as a biosensing material. Food Chemistry, 2011, 127, 1317-1322.	8.2	47
12	Amine-intercalated montmorillonite matrices for enzyme immobilization and biosensing applications. RSC Advances, 2012, 2, 2112.	3.6	46
13	Electrochemical deposition of polypeptides: bio-based covering materials for surface design. Polymer Chemistry, 2014, 5, 3929-3936.	3.9	45
14	Comparative investigation of spectroelectrochemical and biosensor application of two isomeric thienylpyrrole derivatives. RSC Advances, 2015, 5, 52543-52549.	3.6	45
15	Rhodamine-based conjugated polymers: potentiometric, colorimetric and voltammetric sensing of mercury ions in aqueous medium. Analyst, The, 2017, 142, 3407-3415.	3.5	43
16	pH responsive glycopolymer nanoparticles for targeted delivery of anti-cancer drugs. Molecular Systems Design and Engineering, 2018, 3, 150-158.	3.4	43
17	A novel organic–inorganic hybrid conducting copolymer for mediated biosensor applications. RSC Advances, 2014, 4, 46357-46362.	3.6	42
18	Polythiophene- <i>g</i> -poly(ethylene glycol) with Lateral Amino Groups as a Novel Matrix for Biosensor Construction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20612-20622.	8.0	42

#	Article	IF	Citations
19	Application of Biofunctionalized Magnetic Nanoparticles Based-Sensing in Abused Drugs Diagnostics. Analytical Chemistry, 2020, 92, 1033-1040.	6.5	40
20	A new set up for multi-analyte sensing: At-line bio-process monitoring. Biosensors and Bioelectronics, 2011, 26, 4532-4537.	10.1	39
21	Molybdenum oxide/platinum modified glassy carbon electrode: A novel electrocatalytic platform for the monitoring of electrochemical reduction of oxygen and its biosensing applications. Sensors and Actuators B: Chemical, 2013, 185, 331-336.	7.8	37
22	Controlled release of anticancer drug Paclitaxel using nano-structured amphiphilic star-hyperbranched block copolymers. Polymer Chemistry, 2015, 6, 5470-5477.	3.9	37
23	Histidine modified montmorillonite: Laccase immobilization and application to flow injection analysis of phenols. Applied Clay Science, 2013, 86, 64-69.	5. 2	36
24	Modified gold surfaces by 6-(ferrocenyl)hexanethiol/dendrimer/gold nanoparticles as a platform for the mediated biosensing applications. Materials Science and Engineering C, 2013, 33, 634-640.	7.3	36
25	Enzyme immobilization in biosensor constructions: self-assembled monolayers of calixarenes containing thiols. RSC Advances, 2014, 4, 19900-19907.	3.6	36
26	Modified gold surfaces by poly(amidoamine) dendrimers and fructose dehydrogenase for mediated fructose sensing. Talanta, 2011, 87, 67-73.	5.5	35
27	Folic acid-modified clay: targeted surface design for cell culture applications. Journal of Materials Chemistry B, 2013, 1, 522-528.	5.8	35
28	A novel functional conducting polymer as an immobilization platform. Materials Science and Engineering C, 2014, 40, 148-156.	7.3	35
29	Polysulfone based amphiphilic graft copolymers by click chemistry as bioinert membranes. Materials Science and Engineering C, 2011, 31, 1091-1097.	7.3	34
30	The synthesis and targeting of PPP-type copolymers to breast cancer cells: Multifunctional platforms for imaging and diagnosis. Journal of Materials Chemistry, 2012, 22, 9293.	6.7	32
31	A sandwich-type assay based on quantum dot/aptamer bioconjugates for analysis of <i>E. Coli < /i>O157:H7 in microtiter plate format. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 85-90.</i>	3.4	31
32	Cells-on-nanofibers: Effect of polyethyleneimine on hydrophobicity of poly-Æ-caprolacton electrospun nanofibers and immobilization of bacteria. Enzyme and Microbial Technology, 2019, 126, 24-31.	3.2	31
33	4-aminothiophenol-intercalated montmorillonite: Organic-inorganic hybrid material as an immobilization support for biosensors. Sensors and Actuators B: Chemical, 2020, 307, 127665.	7.8	31
34	Biofunctionalization of PAMAM-montmorillonite decorated poly (Æ-caprolactone)-chitosan electrospun nanofibers for cell adhesion and electrochemical cytosensing. Biosensors and Bioelectronics, 2018, 109, 286-294.	10.1	30
35	Bioapplications of Polythiophene-g-Polyphenylalanine-Covered Surfaces. Macromolecular Chemistry and Physics, 2015, 216, 1868-1878.	2.2	28
36	Offline glucose biomonitoring in yeast culture by polyamidoamine/ cysteamineâ€modified gold electrodes. Biotechnology Progress, 2011, 27, 530-538.	2.6	27

#	Article	IF	Citations
37	Calixarene modified montmorillonite: a novel design for biosensing applications. RSC Advances, 2014, 4, 62895-62902.	3.6	27
38	Synthesis of an amine-functionalized naphthalene-containing conducting polymer as a matrix for biomolecule immobilization. RSC Advances, 2013, 3, 19582.	3.6	26
39	Use of Super-Structural Conducting Polymer as Functional Immobilization Matrix in Biosensor Design. Journal of the Electrochemical Society, 2018, 165, B22-B26.	2.9	26
40	Cellulose acetate–chitosan based electrospun nanofibers for bio-functionalized surface design in biosensing. Cellulose, 2020, 27, 10183-10197.	4.9	25
41	A conducting polymer with benzothiadiazole unit: Cell based biosensing applications and adhesion properties. Colloids and Surfaces B: Biointerfaces, 2012, 97, 13-18.	5.0	24
42	Selective Cell Adhesion and Biosensing Applications of Bio-Active Block Copolymers Prepared by CuAAC/Thiol-ene Double Click Reactions. Macromolecular Bioscience, 2015, 15, 1233-1241.	4.1	24
43	Copolymer based multifunctional conducting polymer film for fluorescence sensing of glucose. Methods and Applications in Fluorescence, 2018, 6, 035012.	2.3	22
44	Amino acid intercalated montmorillonite: electrochemical biosensing applications. RSC Advances, 2014, 4, 50107-50113.	3.6	20
45	Sol–Gel/Chitosan/Gold Nanoparticle-Modified Electrode in Mediated Bacterial Biosensor. Food Analytical Methods, 2012, 5, 188-194.	2.6	19
46	A novel ethanol biosensor on pulsed deposited MnOx-MoOx electrode decorated with Pt nanoparticles. Sensors and Actuators B: Chemical, 2016, 237, 291-297.	7.8	19
47	Rhodamine functionalized conducting polymers for dual intention: electrochemical sensing and fluorescence imaging of cells. Journal of Materials Chemistry B, 2017, 5, 7118-7125.	5.8	19
48	High generation dendrimer decorated poly-ƕcaprolactone/polyacrylic acid electrospun nanofibers for the design of a bioelectrochemical sensing surface. Reactive and Functional Polymers, 2021, 161, 104853.	4.1	19
49	Polysulfone/Pyrene Membranes: A New Microwell Assay Platform for Bioapplications. Macromolecular Bioscience, 2011, 11, 1235-1243.	4.1	18
50	Photochemically prepared polysulfone/poly(ethylene glycol) amphiphilic networks and their biomolecule adsorption properties. Colloids and Surfaces B: Biointerfaces, 2011, 88, 265-270.	5.0	17
51	Complex Structured Fluorescent Polythiophene Graft Copolymer as a Versatile Tool for Imaging, Targeted Delivery of Paclitaxel, and Radiotherapy. Biomacromolecules, 2016, 17, 2399-2408.	5.4	17
52	Brilliant green sequestered poly(amic) acid film for dual-mode detection: Fluorescence and electrochemical enzymatic biosensor. Sensors and Actuators B: Chemical, 2018, 256, 71-78.	7.8	17
53	Design of Carbon Nanotube Modified Conducting Polymer for Biosensing Applications. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 503-508.	2.2	16
54	Chitosan matrices modified with carbon nanotubes for use in mediated microbial biosensing. Mikrochimica Acta, 2011, 173, 537-542.	5.0	15

#	Article	IF	CITATIONS
55	Affinity Based Laccase Immobilization on Modified Magnetic Nanoparticles: Biosensing Platform for the Monitoring of Phenolic Compounds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 260-266.	3.4	15
56	Surface Modification with a Catechol-Bearing Polypeptide and Sensing Applications. Biomacromolecules, 2018, 19, 3067-3076.	5.4	15
57	Microfluidic devices and trueâ€color sensor as platform for glucose oxidase and laccase assays. Engineering in Life Sciences, 2011, 11, 182-188.	3.6	14
58	CTAB modified dellite: A novel support for enzyme immobilization in bio-based electrochemical detection and its in vitro antimicrobial activity. Sensors and Actuators B: Chemical, 2016, 235, 46-55.	7.8	14
59	Polyglycolide–montmorillonite as a novel nanocomposite platform for biosensing applications. New Journal of Chemistry, 2017, 41, 9371-9379.	2.8	14
60	Caffeic Acid Detection Using an Inhibition-Based Lipoxygenase Sensor. Food Analytical Methods, 2012, 5, 244-249.	2.6	13
61	Biosensing Applications of Modified Core–Shell Magnetic Nanoparticles. Food Analytical Methods, 2012, 5, 731-736.	2.6	12
62	New Amperometric Cholesterol Biosensors Using Poly(ethyleneoxide) Conducting Polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 1075-1084.	2.2	12
63	Graphene oxide incorporated polystyrene electrospun nanofibers for immunosensing of CD36 as a marker of diabetic plasma. Bioelectrochemistry, 2022, 145, 108083.	4.6	12
64	"Biomimetic-electrochemical-sensory-platform―for biomolecule free cocaine testing. Materials Science and Engineering C, 2018, 90, 211-218.	7.3	11
65	Functional Surfaces Constructed with Hyperbranched Copolymers as Optical Imaging and Electrochemical Cell Sensing Platforms. Macromolecular Chemistry and Physics, 2018, 219, 1700433.	2.2	11
66	Poly(<i>p</i> particle Poly(ethylene glycol) Chains and Amino Groups as a Functional Platform for Controlled Drug Release and Radiotherapy. Macromolecular Bioscience, 2016, 16, 730-737.	4.1	10
67	Modification of Polydivinylbenzene Microspheres by a Hydrobromination/Clickâ€Chemistry Protocol and their Proteinâ€Adsorption Properties. Macromolecular Bioscience, 2011, 11, 141-150.	4.1	9
68	Folicâ€Acidâ€Modified Conducting Polymer: Electrochemical Detection of the Cell Attachment. Macromolecular Bioscience, 2016, 16, 545-552.	4.1	9
69	Modified Gold Surfaces with Gold Nanoparticles and 6â€(Ferrocenyl)hexanethiol: Design of a Mediated Microbial Sensor. Electroanalysis, 2015, 27, 52-57.	2.9	7
70	Laccase assay based on electrochemistry and fluorescence detection via anthracene sequestered poly(amic acid) films. Reactive and Functional Polymers, 2018, 131, 36-43.	4.1	7
71	Functional poly(<i>p</i> pphenylene)s as targeting and drug carrier materials. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 653-659.	3.4	6
72	Comparative cell adhesion properties of cysteine extended peptide architectures. RSC Advances, 2016, 6, 2695-2702.	3.6	6

#	Article	IF	CITATIONS
73	Bioconjugation and Applications of Amino Functional Fluorescence Polymers. Macromolecular Bioscience, 2017, 17, 1600232.	4.1	6
74	Magnetic Nanofiber Layers as a Functional Surface for Biomolecule Immobilization and Oneâ€Use †Sensing inâ€aâ€Drop' Applications. ChemistrySelect, 2018, 3, 13553-13560.	1.5	6
75	Novel fluorescence assay using $\hat{A}\mu$ -wells coated by BODIPY dye as an enzymatic sensing platform. Measurement: Journal of the International Measurement Confederation, 2019, 135, 145-150.	5.0	6
76	Isolation and Immobilization of His-Tagged Alcohol Dehydrogenase on Magnetic Nanoparticles in One Step: Application as Biosensor Platform. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 699-705.	2.2	4
77	Testing of bioactive-nanovesicles on hepatotoxicity of atypical antipsychotics via digital holography. Colloids and Surfaces B: Biointerfaces, 2017, 152, 289-295.	5.0	4
78	BiofuNctionalized nanomaterials for targeting cancer cells. , 2017, , 51-86.		4
79	Catalase-conjugated surfaces: H2O2 detection based on quenching of tryptophan fluorescence on conducting polymers. European Polymer Journal, 2021, 142, 110130.	5.4	4
80	Oligomeric Thiosemicarbazones as Novel Immobilization Matrix in Biosensing Applications. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 392-398.	2.2	3
81	Electrospun Nanofibers: Functional and Attractive Materials for the Sensing and Separation Approaches in Analytical Chemistry. Recent Advances in Analytical Techniques, 2019, , 134-178.	0.5	3
82	Preparation of glutathione loaded nanoemulsions and testing of hepatoprotective activity on THLE-2 cells. Turkish Journal of Chemistry, 2021, 45, 436-451.	1.2	2
83	Bienzymatic fluorescence detection based on paraoxonase and laccase on anthracene-sequestered polyamic acid films: A novel approach for inhibition-based sensors. Materials Today Communications, 2020, 25, 101672.	1.9	2
84	Carbon Nanotube Modified Screen Printed Electrodes: Pyranose Oxidase Immobilization Platform for Amperometric Enzyme Sensors. Journal of Natural and Applied Sciences, 2017, 21, 286.	0.4	2
85	Targeting and imaging of cancer cells using nanomaterials. , 2016, , 209-251.		1
86	A novel immobilization matrix for the biosensing of phenol: self assembled monolayers of calixarenes. Turkish Journal of Biochemistry, 2017, 42, 229-236.	0.5	1