Li Ju

List of Publications by Year in descending order

[^0]

Parametric instability in the neutron star extreme matter observatory. Classical and Quantum Gravity,
$2022,39,085007$.

First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .

Acoustic and vibration isolation for a gravity gradiometer. Review of Scientific Instruments, 2022, 93,
064502.

Six degrees of freedom vibration isolation with Euler springs. Review of Scientific Instruments, 2021, 92, 025122.

Gravitational wave detectors with broadband high frequency sensitivity. Communications Physics,
2021, 4, .

A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.
4.5

144

7 A multi-orientation low-frequency rotational accelerometer. Review of Scientific Instruments, 2021,
$7 \quad 92,064503$.

Cat-flap micro-pendulum for low noise optomechanics. Journal Physics D: Applied Physics, 2021, 54,
035104.

Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced
Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.

Contoured thermal deformation of mirror surface for detuning parametric instability in an optical cavity. Classical and Quantum Gravity, 2020, 37, 125003.

Designing arm cavities free of parametric instability for gravitational wave detectors. Classical and
Quantum Gravity, 2020, 37, 075015.
$4.0 \quad 1$

Rotational isolation with neutrally buoyant suspension. Review of Scientific Instruments, 2020, 91, 054502.

Double end-mirror sloshing cavity for optical dilution of thermal noise in mechanical resonators. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1643.

A laser walk-off sensor for high-precision low-frequency rotation measurements. Review of Scientific Instruments, 2019, 90, 045005.

Characterization of a self-damped pendulum for vibration isolation. Review of Scientific Instruments,
2019, 90, 065103.

Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced
LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.

Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced
Virgo and KAGRA. Living Reviews in Relativity, 2018, $21,3$.
26.7

Ultra-low dissipation resonators for improving the sensitivity of gravitational wave detectors.
2.1

Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2174-2180.
6

19 Angular instability in high optical power suspended cavities. Review of Scientific Instruments, 2018, 89,
124503.

Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGOâ€ $€^{T M}$ s First Observing Run. Physical Review Letters, 2018, 121, 231103.

GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.

Host galaxy identification for binary black hole mergers with long baseline gravitational wave detectors. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4385-4395.

Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave
Background. Physical Review Letters, 2018, 120, 201102.

Suppression of thermal transients in advanced LIGO interferometers using CO ₂ laser preheating. Classical and Quantum Gravity, 2018, 35, 115006.

The Asia-Australia Gravitational Wave Detector Concept. , 2018, , .

Modular suspension system with low acoustic coupling to the suspended test mass in a prototype gravitational wave detector. Review of Scientific Instruments, 2018, 89, 074501.

Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced
Virgo and KAGRA. , 2018, 21, 1.

28 Low-frequency rotational isolator for airborne exploration. Geophysics, 2017, 82, E27-E30.

Effects of waveform model systematics on the interpretation of CW150914. Classical and Quantum
Gravity, $2017,34,104002$.

Preventing transient parametric instabilities in high power gravitational wave detectors using thermal transient compensation. Classical and Quantum Gravity, 2017, 34, 145014.

Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGOâ€ ${ }^{\mathrm{TM}}$ s First Observing Run. Physical Review Letters, 2017, 118, 121101.

Directional Limits on Persistent Gravitational Waves from Advanced LIGOâ€ ${ }^{\mathrm{TM}}$ s First Observing Run.
Physical Review Letters, 2017, 118, 121102.

First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.

34 The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.
2.4

69

GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole
Coalescence. Physical Review Letters, 2017, 119, 141101.
7.8

1,600

37	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	27.8	674
38	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
39	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
40	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LICO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
41	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger CW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
42	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
43	CW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
44	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
45	CW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968

Study of parametric instability in gravitational wave detectors with silicon test masses. Classical and Quantum Gravity, 2017, 34, 055006.
4.0

4

$$
\begin{aligned}
& \text { Thermal modulation for suppression of parametric instability in advanced gravitational wave } \\
& \text { detectors. Classical and Quantum Gravity, 2017, } 34,135001 \text {. }
\end{aligned}
$$

48 Towards thermal noise free optomechanics. Journal Physics D: Applied Physics, 2016, 49, 455104. 2.8 9
49 Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal CW150914. 4.0 225
Classical and Quantum Gravity, 2016, 33, 134001.Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LICO andAdvanced Virgo. Living Reviews in Relativity, 2016, 19, 1.

55	SUPPLEMENT: â€œLOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914â€•(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
56	Tests of General Relativity with CW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
57	Properties of the Binary Black Hole Merger CW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
58	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
59	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERCER CW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
60	Parametric instability in long optical cavities and suppression by dynamic transverse mode frequency modulation. Physical Review D, 2015, 91, .	4.7	20
61	Gravitational wave astronomy: the current status. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	26
62	The development of ground based gravitational wave astronomy and opportunities for Australiaấ"China collaboration. International Journal of Modern Physics A, 2015, 30, 1545019.	1.5	0
63	The next detectors for gravitational wave astronomy. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	23
64	Observation of Parametric Instability in Advanced LIGO. Physical Review Letters, 2015, 114, 161102.	7.8	87
65	Observation of three-mode parametric instability. Physical Review A, 2015, 91,	2.5	19
66	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
67	Linear negative dispersion with a gain doublet via optomechanical interactions. Optics Letters, 2015, 40, 2337.	3.3	8

Near-self-imaging cavity for three-mode optoacoustic parametric amplifiers using silicon
microresonators. Applied Optics, 2014,53, 841.

Three mode interaction noise in laser interferometer gravitational wave detectors. Classical and
74 Quantum Gravity, 2014, 31, 145002.

75 Classical demonstration of frequency-dependent noise ellipse rotation using optomechanically induced transparency. Physical Review A, 2014, 89, .

Implementation of an \$mathcal\{F\}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.

GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.

The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical
binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.
4.0

Concepts and research for future detectors. General Relativity and Gravitation, 2014, 46, 1.
2.0

Radiation pressure excitation of test mass ultrasonic modes via three mode opto-acoustic
80 interactions in a suspended Fabryâ $€^{\prime \prime} P A ̃ \bigodot r o t ~ c a v i t y . ~ P h y s i c s ~ L e t t e r s, ~ S e c t i o n ~ A: ~ G e n e r a l, ~ A t o m i c ~ a n d ~ S o l i d ~$ State Physics, 2013, 377, 1970-1973.

Spectroscopy of thermally excited acoustic modes using three-mode opto-acoustic interactions in a
81 thermally tuned Fabryâ€"PÃ@rot cavity. Physics Letters, Section A: General, Atomic and Solid State
Physics, 2013, 377, 2702-2708.

Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature
Photonics, 2013, 7, 613-619.

High performance rotational vibration isolator. Review of Scientific Instruments, 2013, 84, 105111.
1.3
2.5

High quality factor mg-scale silicon mechanical resonators for 3-mode optoacoustic parametric amplifiers. Journal of Applied Physics, 2013, 114, .

SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS.
Astrophysical Journal, Supplement Series, 2012, 203, 28.

The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.

Novel Euler-LaCoste linkage as a very low frequency vertical vibration isolator. Review of Scientific Instruments, 2012, 83, 085108.

Cryogenic interferometers. , 2012, , 261-276.

Thermal tuning the optical cavity for 3 mode interaction studies using a<i>CO<|i><sub>2<|sub>|aser.
Journal of Physics: Conference Series, 2012, 363, 012018.
0.4

4
1.3

91	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. Astrophysical Journal, 2012, 2.	4.5	60
92	Publisherâ $€^{\mathrm{TM}}$ s Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2012, 85, .	4.7	2
93	Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. Physical Review D, 2011, 83, .	4.7	54
94	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	8.3	55
95	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	4.5	89
96	Rayleigh scattering in fused silica samples for gravitational wave detectors. Optics Communications, 2011, 284, 4732-4737.	2.1	5
97	High-sensitivity three-mode optomechanical transducer. Physical Review A, 2011, 84, .	2.5	12
98	Publisherâ $€^{T M}$ s Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2011, 83, .	4.7	0
99	Directional Limits on Persistent Gravitational Waves Using LICO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	7.8	94

$\begin{array}{ll} & \text { A gravitatio } \\ & 7,962-965 .\end{array}$
716
NOISE PERFORMANCE OF A 72 m SUSPENDED FABRYâ€"PÃ\%_ROT CAVITY. International Journal of Modern103 Modern Physics D, 2011, 20, 2069-2074.104 Study of three-mode parametric instability. Journal of Physics: Conference Series, 2010, 228, 012025.
105 Three-mode opto-acoustic interactions in optical cavities: introducing the three-mode opto-acoustic parametric amplifier. Proceedings of SPIE, 2010, , .0.81

109	Modelling of tuning of an ultra low frequency Roberts Linkage vibration isolator. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 3705-3709.	2.1	4
110	Calibration of the LICO gravitational wave detectors in the fifth science run. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 624, 223-240.	1.6	120
111	Vacuum control system for the AICO gravitational wave detector. Vacuum, 2010, 85, 176-179.	3.5	1
112	Enhancement and suppression of opto-acoustic parametric interactions using optical feedback. Physical Review A, 2010, 81, .	2.5	8
113	Opto-acoustic interactions in gravitational wave detectors: Comparing flat-top beams with Gaussian beams. Physical Review D, 2010, 81, .	4.7	10
114	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	4.5	155
115	Parametric instabilities in advanced gravitational wave detectors. Classical and Quantum Gravity, 2010, 27, 205019.	4.0	28
116	Testing the suppression of opto-acoustic parametric interactions using optical feedback control. Classical and Quantum Gravity, 2010, 27, 084028.	4.0	9
117	AICO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors. Classical and Quantum Gravity, 2010, $27,084005$.	4.0	20
118	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	4.0	956
119	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LICO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
120	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	7.8	83
121	Observation of optical torsional stiffness in a high optical power cavity. Applied Physics Letters, 2009, 94, 081105.	3.3	7

\#	Article	IF	Citations
127	Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics, 2009, 11, 073032.	2.9	123
128	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	27.8	303
129	Differential readout for a magnetic gradiometer. Sensors and Actuators A: Physical, 2009, 153, 5-12.	4.1	1
130	Einstein@Home search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2009, 79,	4.7	83
131	Search for gravitational-wave bursts in the first year of the fifth LICO science run. Physical Review D, 2009, 80, .	4.7	79
132	LIGO: the Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 2009, 72, 076901.	20.1	971
133	Einstein@Home search for periodic gravitational waves in early S5 LICO data. Physical Review D, 2009, 80,	4.7	78
134	First LIGO search for gravitational wave bursts from cosmic (super)strings. Physical Review D, 2009, 80,	4.7	45
135	Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGOấ ${ }^{T M}$ s fifth science run. Physical Review D, 2009, 80, .	4.7	105
136	Search for gravitational waves from low mass binary coalescences in the first year of LIGOâ $€^{\mathrm{TM}} \mathrm{S} S 5$ data. Physical Review D, 2009, 79, .	4.7	120
137	Direct measurement of absorption-induced wavefront distortion in high optical power systems. Applied Optics, 2009, 48, 355.	2.1	14
138	Quantum ground-state cooling and tripartite entanglement with three-mode optoacoustic interactions. Physical Review A, 2009, 79, .	2.5	24
139	Search for gravitational wave ringdowns from perturbed black holes in LICO S4 data. Physical Review D, 2009, 80,	4.7	38

$140 \begin{aligned} & \text { Search for high frequency gravitati } \\ & \text { run. Physical Review D, 2009, 80, . }\end{aligned}$

Three-Mode Optoacoustic Parametric Amplifier: A Tool for Macroscopic Quantum Experiments.
7.8

41
Physical Review Letters, 2009, 102, 243902.

142 Results from a novel direct magnetic gradiometer. Exploration Geophysics, 2009, 40, 222-226.
1.1

8

Direct string magnetic gradiometer for space applications. Sensors and Actuators A: Physical, 2008, 147, 529-535.

Test mass ring dampers with minimum thermal noise. Physics Letters, Section A: General, Atomic and
Solid State Physics, 2008, 372, 1348-1356.

Publisherâ $\epsilon^{T M} \mathrm{~S}$ Note: Upper limit map of a background of gravitational waves [Phys. Rev. $\left.\mathrm{D}<\mathrm{b}>76</ \mathrm{b}\right\rangle$, 082003 (2007)]. Physical Review D, 2008, 77, .

Publisherâ $€^{T M}$ S Note: Upper limits on gravitational wave emission from 78 radio pulsars [Phys. Rev. D76, 042001 (2007)]. Physical Review D, 2008, 77, .

Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Physical Review D, 2008, 77, .

149 All-sky search for periodic gravitational waves in LICO S4 data. Physical Review D, 2008, 77, .
4.7

Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals. Physical Review D, 2008, 78, .

Feedback control of thermal lensing in a high optical power cavity. Review of Scientific Instruments, 2008, 79, 104501.

Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.

First joint search for gravitational-wave bursts in LICO and CEO 600 data. Classical and Quantum
Gravity, 2008, 25, 245008.

Ajoint search for gravitational wave bursts with AURIGA and LIGO. Classical and Quantum Gravity, 2008, 25, 095004.

Publisherâ $€^{T M}$ s Note: All-sky search for periodic gravitational waves in LIGO S4 data [Phys. Rev. D77, 022001
(2008)]. Physical Review D, 2008, 77, .
$4.7 \quad 0$

Observation of enhanced optical spring damping in a macroscopic mechanical resonator and
156 application for parametric instability control in advanced gravitational-wave detectors. Physical
Review A, 2008, 77, .

157 Three-mode optoacoustic parametric interactions with a coupled cavity. Physical Review A, 2008, 78, . 2.510

Observation of three-mode parametric interactions in long optical cavities. Physical Review A, 2008, 78, .

Publisherâ $€^{T M} s$ Note: First cross-correlation analysis of interferometric and resonant-bar
159 gravitational-wave data for stochastic backgrounds [Phys. Rev. D76, 022001 (2007)]. Physical
Review D, 2008, 77, .
Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. Physical Review D, 2008,
77, .

Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 2008, 101,
211102.

Implications for the Origin of GRB 070201 from LIGO Observations. Astrophysical Journal, 2008, 681, 1419-1430.
Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. Astrophysical
163 Journal, 2008, 683, L45-L49.

The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO. Journal of Physics: Conference Series, 2008, 122, 012001.

$4.0 \quad 78$
165 Search for gravitational-wave bursts in LIGO data from the fourth science run. Classical and Quantum Gravity, 2007, 24, 5343-5369.

Upper limits on gravitational wave emission from 78 radio pulsars. Physical Review D, 2007, 76, .

Publisherâ $€^{\mathrm{TM}}$ s Note: First cross-correlation analysis of interferometric and resonant-bar
167 gravitational-wave data for stochastic backgrounds [Phys. Rev. DPRVDAQ0556-282176, 022001 (2007)].
$4.7 \quad 0$
Physical Review D, 2007, 76, .

First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. Physical Review D, 2007, 76, .
$4.7 \quad 35$

$$
\begin{aligned}
& 169 \text { Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer } \\
& \text { Gravitational-Wave Observatory. Astrophysical Journal, 2007, 659, 918-930. } \\
& 170 \quad \begin{array}{l}
\text { Numerical calculations of diffraction losses in advanced interferometric gravitational wave } \\
\text { detectors. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, } \\
1731 .
\end{array} \\
& 171 \text { Thermal tuning of optical cavities for parametric instability control. Journal of the Optical Society of } \\
& \text { America B: Optical Physics, 2007, 24, 1336. }
\end{aligned}
$$

4.5
1.5

Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results
172 from the second LICO science run. Physical Review D, 2007, 76, .
4.7

128

173 Upper limit map of a background of gravitational waves. Physical Review D, 2007, 76, .
4.7

90
Search for gravitational wave radiation associated with the pulsating tail of the SGR<mml:math
 of 27 December 2004 using LIGO. Physical Review D, 2007, 76,
175 Rayleigh scattering, absorption, and birefringence of large-size bulk single-crystal sapphire. Applied

AICO High Performance Compact Vibration Isolation System. Journal of Physics: Conference Series, 2006, 32, 111-116.
$0.4 \quad 8$
181 Gingin High Optical Power Test Facility. Journal of Physics: Conference Series, 2006, 32, 368-373. 24

Thin walled Nb tubes for suspending test masses in interferometric gravitational wave detectors.
182 Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 350, 319-323.
2.15

5

183	Multiple modes contributions to parametric instabilities in advanced laser interferometer gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 354, 360-365.	2.1	54
184	Comparison of parametric instabilities for different test mass materials in advanced gravitational wave interferometers. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 355, 419-426.	2.1	30
185	Identifying deterministic signals in simulated gravitational wave data: algorithmic complexity and the surrogate data method. Classical and Quantum Gravity, 2006, 23, 1801-1814.	4.0	2
186	Status of the Australian Consortium for Interferometric Gravitational Astronomy. Classical and Quantum Gravity, 2006, 23, S41-S49.	4.0	14
187	Compensation of Strong Thermal Lensing in High-Optical-Power Cavities. Physical Review Letters, 2006, 96, 231101.	7.8	40

$$
188 \text { High mechanical quality factor of calcium fluoride (CaF2) at room temperature. EPJ Applied Physics, }
$$ 2005, 30, 189-192.

0.7

2

Low frequency vertical geometric anti-spring vibration isolators. Physics Letters, Section A: General,	2.1	42
	Atomic and Solid State Physics, 2005, 336, 97-105.	

191 Thermal lensing compensation principle for the ACICA's High Optical Power Test Facility Test 1.
General Relativity and Gravitation, 2005, 37, 1581-1589.
2.0 7
Demonstration of low power radiation pressure actuation for control of test masses. Review of Scientific Instruments, 2005, 76, 036107.
$1.3 \quad 4$

High Q factor bonding using natural resin for reduced thermal noise of test masses. Review of

| 199 | ACIGA's high optical power test facility. Classical and Quantum Gravity, 2004, 21, S887-S893. | 4.0 |
| :--- | :--- | :--- | | An experiment to investigate optical spring parametric instability. Classical and Quantum Gravity, |
| :--- |201 Radiation pressure actuation of test masses. Classical and Quantum Gravity, 2004, 21, S875-S880.$4.0 \quad 5$

Testing of a multi-stage low-frequency isolator using Euler spring and self-damped pendulums.
203 Thermal lensing compensation for AIGO high optical power test facility. Classical and Quantum 4.0 19
Implementation of electrostatic actuators for suspended test mass control. Classical and Quantum Gravity, 2004, 21, S977-S983.
205 Non-contacting actuation by radiation powered telemetry system. Classical and Quantum Gravity, 2004, 21, S1023-S1029.
207 Large-scale inhomogeneity in sapphire test mass
208 Techniques for reducing the resonant fre
Quantum Gravity, 2004, 21, S959-S963. 4.0 13
209 The study of 1.5 4210 Thermal noise dependence on equatorial losses in the mirrors of an interferometric gravitational2.15
211 Status of ACIGA High Power Test Facility for advanced interferometry. , 2004, , 1
212 String magnetic gradiometer system: recent airborne trials. , 2004, , 9
213 Simulation of bulk-absorption thermal lensing in transmissive optics of gravitational waves 2.2 15
detectors. Applied Physics B: Lasers and Optics, 2003, 77, 409-414.1.3

```
Australia's Role in Gravitational Wave Detection. Publications of the Astronomical Society of
Australia, 2003, 20, 223-241.
```

217 Tilt sensor and servo control system for gravitational wave detection. Classical and QuantumGravity, 2002, 19, 1723-1729.

Improved technique for measuring high pendulumQ-factors. Measurement Science and Technology, 2002, 13, 218-221.

Investigation of a laser walk-off angle sensor and its application to tilt measurement in gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 280, 197-203.
2.1
225 Long-term length stability and search for excess noise in multi-stage cantilever spring vibration
225 isolators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 266, 219-227.

Tilt suppression for ultra-low residual motion vibration isolation in gravitational wave detection.
226 Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 277, 143-155.
2.1

23

227 Detection of gravitational waves. Reports on Progress in Physics, 2000, 63, 1317-1427.

$20.1 \quad 77$

228 The influence of X-ray damage on high purity sapphire optical absorption and investigation on the origin of the residual absorption @1064 nm. AlP Conference Proceedings, 2000, , .
$0.4 \quad 2$
229 X-ray induced absorption of high-purity sapphire and investigation of the origin of the residual
X-ray induced absorption of high-purity sapphire and investigation of the origin
absorption at 1064 nm . Journal Physics D: Applied Physics, 2000, 33, 589-594.
2.8

23

Rayleigh scattering in sapphire test mass for laser interferometric gravitational-wave detectors.
230 Optics Communications, 1999, 167, 7-13.
2.1

16

The quality factor of niobium flexure pendulums. Physics Letters, Section A: General, Atomic and Solid
231 State Physics, 1999, 254, 239-244.
$2.1 \quad 7$

Stresses in flexure pendulums for gravitational wave detectors. Physics Letters, Section A: General,
232 Atomic and Solid State Physics, 1999, 256, 1-8.
2.1

1

Rayleigh scattering in sapphire test mass for laser interferometric gravitational-wave detectors:.
Optics Communications, 1999, 170, 9-14.

\#	Article	IF	Citations
235	Design and verification of low acoustic loss suspension systems for measuring the Q-factor of a gravitational wave detector test mass. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 246, 37-42.	2.1	19
236	Near-shore ocean wave measurement using a very low frequency folded pendulum. Measurement Science and Technology, 1998, 9, 1772-1776.	2.6	29
237	Operation of an 8 m suspended Michelson interferometer. Review of Scientific Instruments, 1998, 69, 2773-2776.	1.3	1
238	Vibration isolation performance of an ultra-low frequency folded pendulum resonator. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 228, 243-249.	2.1	105
239	Sapphire beamsplitters and test masses for advanced laser interferometer gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 218, 197-206.	2.1	28
240	THE DETECTION OF GRAVITATIONAL WAVES. International Journal of Modern Physics D, 1996, 05, 101-150.	2.1	12
241	A cosmological background of gravitational waves produced by supernovae in the early Universe. Monthly Notices of the Royal Astronomical Society, 1996, 283, 648-650.	4.4	23
242	Normal mode suppression in all metal cantilever vibration isolators. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 197, 275-281.	2.1	0
243	Design of suspension systems for measurement of high-Q pendulums. Measurement Science and Technology, 1995, 6, 269-275.	2.6	2
244	Compound pendulum test mass systems for laser interferometer gravitational wave detectors. Measurement Science and Technology, 1994, 5, 1053-1060.	2.6	4
245	Low resonant frequency cantilever spring vibration isolator for gravitational wave detectors. Review of Scientific Instruments, 1994, 65, 3482-3488.	1.3	32
246	Performance of an ultra low-frequency folded pendulum. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 193, 223-226.	2.1	52
247	Vibration isolation for gravitational wave detection. Classical and Quantum Gravity, 1993, 10, 2407-2418.	4.0	18
248	Tests on a low-frequency inverted pendulum system. Measurement Science and Technology, 1993, 4, 995-999.	2.6	31
249	Ultrahigh Q pendulum suspensions for gravitational wave detectors. Review of Scientific Instruments, 1993, 64, 1899-1904.	1.3	30

250 High dynamic range measurements of an all metal isolator using a sapphire transducer (for) Tj ETQq0 00 rgBT /Overlock 10 Tf 50142 T

251 Gravitational waves., 0, , 3-15.

254 Gravitational wave data analysis. , 0, , 71-88.

[^0]: Source: https:/|exaly.com/author-pdf/6200539/publications.pdf
 Version: 2024-02-01

