

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6200539/publications.pdf

Version: 2024-02-01

Li lu

#	Article	IF	CITATIONS
1	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
2	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
3	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
4	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
5	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
6	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
7	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
8	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
9	LIGO: the Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 2009, 72, 076901.	20.1	971
10	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
11	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	4.0	956
12	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	31.4	825
13	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
14	A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Physics, 2011, 7, 962-965.	16.7	716
15	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	27.8	674
16	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
17	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
18	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466

#	Article	IF	CITATIONS
19	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
20	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
21	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	27.8	303
22	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
23	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
24	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
25	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
26	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
27	Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. Astrophysical Journal, 2008, 683, L45-L49.	4.5	160
28	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
29	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	4.5	155
30	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
31	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
32	Implications for the Origin of GRB 070201 from LIGO Observations. Astrophysical Journal, 2008, 681, 1419-1430.	4.5	143
33	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
34	Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run. Physical Review D, 2007, 76, .	4.7	128
35	Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. Physical Review D, 2008, 77, .	4.7	126
36	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125

#	Article	IF	CITATIONS
37	Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics, 2009, 11, 073032.	2.9	123
38	Upper limits on gravitational wave emission from 78 radio pulsars. Physical Review D, 2007, 76, .	4.7	121
39	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophysical Journal, 2007, 659, 918-930.	4.5	120
40	Search for gravitational waves from low mass binary coalescences in the first year of LIGO's S5 data. Physical Review D, 2009, 79, .	4.7	120
41	Calibration of the LIGO gravitational wave detectors in the fifth science run. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 624, 223-240.	1.6	120
42	All-sky search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2008, 77, .	4.7	110
43	Vibration isolation performance of an ultra-low frequency folded pendulum resonator. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 228, 243-249.	2.1	105
44	Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run. Physical Review D, 2009, 80, .	4.7	105
45	FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR. Astrophysical Journal, 2010, 722, 1504-1513.	4.5	104
46	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	4.5	104
47	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
48	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	7.8	94
49	Parametric Instabilities and Their Control in Advanced Interferometer Gravitational-Wave Detectors. Physical Review Letters, 2005, 94, 121102.	7.8	91
50	Upper limit map of a background of gravitational waves. Physical Review D, 2007, 76, .	4.7	90
51	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
52	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	4.5	89
53	Observation of Parametric Instability in Advanced LIGO. Physical Review Letters, 2015, 114, 161102.	7.8	87
54	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86

#	Article	IF	CITATIONS
55	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
56	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
57	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	7.8	83
58	Einstein@Home search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2009, 79, .	4.7	83
59	Search for gravitational-wave bursts in the first year of the fifth LIGO science run. Physical Review D, 2009, 80, .	4.7	79
60	Search for gravitational-wave bursts in LIGO data from the fourth science run. Classical and Quantum Gravity, 2007, 24, 5343-5369.	4.0	78
61	Einstein@Home search for periodic gravitational waves in early S5 LIGO data. Physical Review D, 2009, 80, .	4.7	78
62	Detection of gravitational waves. Reports on Progress in Physics, 2000, 63, 1317-1427.	20.1	77
63	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77
64	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	4.0	73
65	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
66	Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 2008, 101, 211102.	7.8	69
67	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
68	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68
69	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66
70	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	7.7	62
71	Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Physical Review D, 2008, 77, .	4.7	60
72	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	4.5	60

#	ARTICLE	IF	CITATIONS
73	IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS. Astrophysical Journal, 2012, 755, 2.	4.5	60
74	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	7.7	57
75	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	8.3	55
76	Multiple modes contributions to parametric instabilities in advanced laser interferometer gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 354, 360-365.	2.1	54
77	Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals. Physical Review D, 2008, 78, .	4.7	54
78	Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar. Physical Review D, 2011, 83, .	4.7	54
79	Performance of an ultra low-frequency folded pendulum. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 193, 223-226.	2.1	52
80	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
81	Search for gravitational wave radiation associated with the pulsating tail of the SGR <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1806</mml:mn><mml:mo>â"</mml:mo>ar"20</mml:math> hyper of 27 December 2004 using LIGO. Physical Review D. 2007. 76	flåre	51
82	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
83	First LIGO search for gravitational wave bursts from cosmic (super)strings. Physical Review D, 2009, 80, .	4.7	45
84	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009, 701, L68-L74.	4.5	45
85	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
86	Low frequency vertical geometric anti-spring vibration isolators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 336, 97-105.	2.1	42
87	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	4.0	42
88	Three-Mode Optoacoustic Parametric Amplifier: A Tool for Macroscopic Quantum Experiments. Physical Review Letters, 2009, 102, 243902.	7.8	41
89	Compensation of Strong Thermal Lensing in High-Optical-Power Cavities. Physical Review Letters, 2006, 96, 231101.	7.8	40
90	Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. Physical Review	4.7	38

#	Article	IF	CITATIONS
91	First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds. Physical Review D, 2007, 76, .	4.7	35
92	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	4.0	34
93	Observation of three-mode parametric interactions in long optical cavities. Physical Review A, 2008, 78, .	2.5	33
94	Low resonant frequency cantilever spring vibration isolator for gravitational wave detectors. Review of Scientific Instruments, 1994, 65, 3482-3488.	1.3	32
95	Search for high frequency gravitational-wave bursts in the first calendar year of LIGO's fifth science run. Physical Review D, 2009, 80, .	4.7	32
96	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	4.5	32
97	Tests on a low-frequency inverted pendulum system. Measurement Science and Technology, 1993, 4, 995-999.	2.6	31
98	Passive vibration isolation using a Roberts linkage. Review of Scientific Instruments, 2003, 74, 3487-3491.	1.3	31
99	Ultrahigh Q pendulum suspensions for gravitational wave detectors. Review of Scientific Instruments, 1993, 64, 1899-1904.	1.3	30
100	Comparison of parametric instabilities for different test mass materials in advanced gravitational wave interferometers. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 355, 419-426.	2.1	30
101	Near-shore ocean wave measurement using a very low frequency folded pendulum. Measurement Science and Technology, 1998, 9, 1772-1776.	2.6	29
102	Sapphire beamsplitters and test masses for advanced laser interferometer gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 218, 197-206.	2.1	28
103	Parametric instabilities in advanced gravitational wave detectors. Classical and Quantum Gravity, 2010, 27, 205019.	4.0	28
104	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	4.0	26
105	Gravitational wave astronomy: the current status. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	26
106	Gravitational wave detectors with broadband high frequency sensitivity. Communications Physics, 2021, 4, .	5.3	26
107	Gingin High Optical Power Test Facility. Journal of Physics: Conference Series, 2006, 32, 368-373.	0.4	24
108	Quantum ground-state cooling and tripartite entanglement with three-mode optoacoustic interactions. Physical Review A, 2009, 79, .	2.5	24

#	Article	IF	CITATIONS
109	A cosmological background of gravitational waves produced by supernovae in the early Universe. Monthly Notices of the Royal Astronomical Society, 1996, 283, 648-650.	4.4	23
110	Tilt suppression for ultra-low residual motion vibration isolation in gravitational wave detection. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 277, 143-155.	2.1	23
111	X-ray induced absorption of high-purity sapphire and investigation of the origin of the residual absorption at 1064 nm. Journal Physics D: Applied Physics, 2000, 33, 589-594.	2.8	23
112	Thermal tuning of optical cavities for parametric instability control. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 1336.	2.1	23
113	The next detectors for gravitational wave astronomy. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	23
114	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. Classical and Quantum Gravity, 2008, 25, 245008.	4.0	22
115	Tilt sensor and servo control system for gravitational wave detection. Classical and Quantum Gravity, 2002, 19, 1723-1729.	4.0	21
116	The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO. Journal of Physics: Conference Series, 2008, 122, 012001.	0.4	21
117	Strategies for the control of parametric instability in advanced gravitational wave detectors. Classical and Quantum Gravity, 2009, 26, 015002.	4.0	21
118	Observation of enhanced optical spring damping in a macroscopic mechanical resonator and application for parametric instability control in advanced gravitational-wave detectors. Physical Review A, 2008, 77, .	2.5	20
119	AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors. Classical and Quantum Gravity, 2010, 27, 084005.	4.0	20
120	Parametric instability in long optical cavities and suppression by dynamic transverse mode frequency modulation. Physical Review D, 2015, 91, .	4.7	20
121	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
122	Design and verification of low acoustic loss suspension systems for measuring the Q-factor of a gravitational wave detector test mass. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 246, 37-42.	2.1	19
123	ACIGA's high optical power test facility. Classical and Quantum Gravity, 2004, 21, S887-S893.	4.0	19
124	Thermal lensing compensation for AIGO high optical power test facility. Classical and Quantum Gravity, 2004, 21, S903-S908.	4.0	19
125	Observation of three-mode parametric instability. Physical Review A, 2015, 91, .	2.5	19
126	Vibration isolation for gravitational wave detection. Classical and Quantum Gravity, 1993, 10, 2407-2418.	4.0	18

#	Article	IF	CITATIONS
127	Test mass ring dampers with minimum thermal noise. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 1348-1356.	2.1	17
128	Rayleigh scattering in sapphire test mass for laser interferometric gravitational-wave detectors. Optics Communications, 1999, 167, 7-13.	2.1	16
129	A joint search for gravitational wave bursts with AURIGA and LIGO. Classical and Quantum Gravity, 2008, 25, 095004.	4.0	16
130	Classical demonstration of frequency-dependent noise ellipse rotation using optomechanically induced transparency. Physical Review A, 2014, 89, .	2.5	16
131	Investigation of a laser walk-off angle sensor and its application to tilt measurement in gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 280, 197-203.	2.1	15
132	Simulation of bulk-absorption thermal lensing in transmissive optics of gravitational waves detectors. Applied Physics B: Lasers and Optics, 2003, 77, 409-414.	2.2	15
133	Numerical calculations of diffraction losses in advanced interferometric gravitational wave detectors. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 1731.	1.5	15
134	Status of the Australian Consortium for Interferometric Gravitational Astronomy. Classical and Quantum Gravity, 2006, 23, S41-S49.	4.0	14
135	Direct measurement of absorption-induced wavefront distortion in high optical power systems. Applied Optics, 2009, 48, 355.	2.1	14
136	Birefringence measurements of sapphire test masses for laser interferometer gravitational wave detector. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 237, 337-342.	2.1	13
137	Testing of a multi-stage low-frequency isolator using Euler spring and self-damped pendulums. Classical and Quantum Gravity, 2004, 21, S965-S971.	4.0	13
138	Techniques for reducing the resonant frequency of Euler spring vibration isolators. Classical and Quantum Gravity, 2004, 21, S959-S963.	4.0	13
139	THE DETECTION OF GRAVITATIONAL WAVES. International Journal of Modern Physics D, 1996, 05, 101-150.	2.1	12
140	An experiment to investigate optical spring parametric instability. Classical and Quantum Gravity, 2004, 21, S1253-S1258.	4.0	12
141	High-sensitivity three-mode optomechanical transducer. Physical Review A, 2011, 84, .	2.5	12
142	High dynamic range measurements of an all metal isolator using a sapphire transducer (for) Tj ETQq0 0 0 rgBT /	Overlock I	10 Tf 50 142

143	Compact vibration isolation and suspension for Australian International Gravitational Observatory: Local control system. Review of Scientific Instruments, 2009, 80, 114502.	1.3	11
144	Low loss niobium flexure suspension systems. Classical and Quantum Gravity, 2002, 19, 1703-1708.	4.0	10

#	Article	IF	CITATIONS
145	Three-mode optoacoustic parametric interactions with a coupled cavity. Physical Review A, 2008, 78, .	2.5	10
146	Opto-acoustic interactions in gravitational wave detectors: Comparing flat-top beams with Gaussian beams. Physical Review D, 2010, 81, .	4.7	10
147	Rayleigh scattering, absorption, and birefringence of large-size bulk single-crystal sapphire. Applied Optics, 2006, 45, 2631.	2.1	9
148	Optimizing a direct string magnetic gradiometer for geophysical exploration. Review of Scientific Instruments, 2009, 80, 104705.	1.3	9
149	Testing the suppression of opto-acoustic parametric interactions using optical feedback control. Classical and Quantum Gravity, 2010, 27, 084028.	4.0	9
150	Radiation pressure excitation of test mass ultrasonic modes via three mode opto-acoustic interactions in a suspended Fabry–Pérot cavity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1970-1973.	2.1	9
151	Towards thermal noise free optomechanics. Journal Physics D: Applied Physics, 2016, 49, 455104.	2.8	9
152	String magnetic gradiometer system: recent airborne trials. , 2004, , .		9
153	Large-scale inhomogeneity in sapphire test masses revealed by Rayleigh scattering imaging. Classical and Quantum Gravity, 2004, 21, S1139-S1144.	4.0	8
154	Orthogonal ribbons for suspending test masses in interferometric gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 339, 217-223.	2.1	8
155	AIGO High Performance Compact Vibration Isolation System. Journal of Physics: Conference Series, 2006, 32, 111-116.	0.4	8
156	Direct string magnetic gradiometer for space applications. Sensors and Actuators A: Physical, 2008, 147, 529-535.	4.1	8
157	Results from a novel direct magnetic gradiometer. Exploration Geophysics, 2009, 40, 222-226.	1.1	8
158	Enhancement and suppression of opto-acoustic parametric interactions using optical feedback. Physical Review A, 2010, 81, .	2.5	8
159	Linear negative dispersion with a gain doublet via optomechanical interactions. Optics Letters, 2015, 40, 2337.	3.3	8
160	A laser walk-off sensor for high-precision low-frequency rotation measurements. Review of Scientific Instruments, 2019, 90, 045005.	1.3	8
161	A multi-orientation low-frequency rotational accelerometer. Review of Scientific Instruments, 2021, 92, 064503.	1.3	8
162	The quality factor of niobium flexure pendulums. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 254, 239-244.	2.1	7

#	Article	IF	CITATIONS
163	Influence of grooves and defects on the sapphire test mass Q -factor. Classical and Quantum Gravity, 2004, 21, S1121-S1126.	4.0	7
164	Thermal lensing compensation principle for the ACIGA's High Optical Power Test Facility Test 1. General Relativity and Gravitation, 2005, 37, 1581-1589.	2.0	7
165	High Q factor bonding using natural resin for reduced thermal noise of test masses. Review of Scientific Instruments, 2005, 76, 026117.	1.3	7
166	Feedback control of thermal lensing in a high optical power cavity. Review of Scientific Instruments, 2008, 79, 104501.	1.3	7
167	Observation of optical torsional stiffness in a high optical power cavity. Applied Physics Letters, 2009, 94, 081105.	3.3	7
168	High performance rotational vibration isolator. Review of Scientific Instruments, 2013, 84, 105111.	1.3	7
169	Six degrees of freedom vibration isolation with Euler springs. Review of Scientific Instruments, 2021, 92, 025122.	1.3	7
170	Rayleigh scattering in sapphire test mass for laser interferometric gravitational-wave detectors:. Optics Communications, 1999, 170, 9-14.	2.1	6
171	High-Q niobium membrane flexure pendulum. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 280, 182-184.	2.1	6
172	Second-generation laser interferometry for gravitational wave detection: ACIGA progress. Classical and Quantum Gravity, 2001, 18, 4121-4126.	4.0	6
173	Niobium flexure suspension design for high Q sapphire test masses for future gravitational wave detectors. Measurement Science and Technology, 2002, 13, 1173-1177.	2.6	6
174	Technology developments for ACIGA high power test facility for advanced interferometry. Classical and Quantum Gravity, 2005, 22, S199-S208.	4.0	6
175	Low magnetic susceptibility materials and applications in magnetic gradiometry. Smart Materials and Structures, 2009, 18, 095038.	3.5	6
176	Novel Euler-LaCoste linkage as a very low frequency vertical vibration isolator. Review of Scientific Instruments, 2012, 83, 085108.	1.3	6
177	Gravitational wave data analysis. , 0, , 71-88.		6
178	Spectroscopy of thermally excited acoustic modes using three-mode opto-acoustic interactions in a thermally tuned Fabry–Pérot cavity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 2702-2708.	2.1	6
179	High quality factor mg-scale silicon mechanical resonators for 3-mode optoacoustic parametric amplifiers. Journal of Applied Physics, 2013, 114, .	2.5	6
180	Ultra-low dissipation resonators for improving the sensitivity of gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2174-2180.	2.1	6

#	Article	IF	CITATIONS
181	Host galaxy identification for binary black hole mergers with long baseline gravitational wave detectors. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4385-4395.	4.4	6
182	Radiation pressure actuation of test masses. Classical and Quantum Gravity, 2004, 21, S875-S880.	4.0	5
183	Thermal noise dependence on equatorial losses in the mirrors of an interferometric gravitational wave detector. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 333, 1-7.	2.1	5
184	Preliminary investigation on a passive method for parametric instability control in advanced gravitational wave detectors. Journal of Physics: Conference Series, 2006, 32, 251-258.	0.4	5
185	Thin walled Nb tubes for suspending test masses in interferometric gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 350, 319-323.	2.1	5
186	Rayleigh scattering in fused silica samples for gravitational wave detectors. Optics Communications, 2011, 284, 4732-4737.	2.1	5
187	Compound pendulum test mass systems for laser interferometer gravitational wave detectors. Measurement Science and Technology, 1994, 5, 1053-1060.	2.6	4
188	Long-term length stability and search for excess noise in multi-stage cantilever spring vibration isolators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 266, 219-227.	2.1	4
189	Implementation of electrostatic actuators for suspended test mass control. Classical and Quantum Gravity, 2004, 21, S977-S983.	4.0	4
190	The study of growth defects in sapphire by laser Rayleigh scattering imaging. Journal of Optics, 2004, 6, 635-639.	1.5	4
191	Demonstration of low power radiation pressure actuation for control of test masses. Review of Scientific Instruments, 2005, 76, 036107.	1.3	4
192	Modelling of tuning of an ultra low frequency Roberts Linkage vibration isolator. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 3705-3709.	2.1	4
193	Thermal tuning the optical cavity for 3 mode interaction studies using a <i>CO</i> ₂ laser. Journal of Physics: Conference Series, 2012, 363, 012018.	0.4	4
194	Study of parametric instability in gravitational wave detectors with silicon test masses. Classical and Quantum Gravity, 2017, 34, 055006.	4.0	4
195	Modular suspension system with low acoustic coupling to the suspended test mass in a prototype gravitational wave detector. Review of Scientific Instruments, 2018, 89, 074501.	1.3	4
196	TheQ-factor of flexure membranes. Measurement Science and Technology, 2001, 12, 1666-1671.	2.6	3
197	Automatic Rayleigh scattering mapping system for optical quality evaluation of test masses for gravity wave detectors. Review of Scientific Instruments, 2005, 76, 015104.	1.3	3
198	Parametric Instability in Advanced Laser Interferometer Gravitational Wave Detectors. Journal of Physics: Conference Series, 2006, 32, 282-287.	0.4	3

#	Article	IF	CITATIONS
199	THE AIGO PROJECT. International Journal of Modern Physics D, 2011, 20, 2087-2092.	2.1	3
200	Three mode interactions as a precision monitoring tool for advanced laser interferometers. Classical and Quantum Gravity, 2014, 31, 185003.	4.0	3
201	Near-self-imaging cavity for three-mode optoacoustic parametric amplifiers using silicon microresonators. Applied Optics, 2014, 53, 841.	1.8	3
202	Three mode interaction noise in laser interferometer gravitational wave detectors. Classical and Quantum Gravity, 2014, 31, 145002.	4.0	3
203	Low-frequency rotational isolator for airborne exploration. Geophysics, 2017, 82, E27-E30.	2.6	3
204	Angular instability in high optical power suspended cavities. Review of Scientific Instruments, 2018, 89, 124503.	1.3	3
205	Suppression of thermal transients in advanced LIGO interferometers using CO ₂ laser preheating. Classical and Quantum Gravity, 2018, 35, 115006.	4.0	3
206	Design of suspension systems for measurement of high-Q pendulums. Measurement Science and Technology, 1995, 6, 269-275.	2.6	2
207	The influence of X-ray damage on high purity sapphire optical absorption and investigation on the origin of the residual absorption @1064 nm. AIP Conference Proceedings, 2000, , .	0.4	2
208	Improved technique for measuring high pendulumQ-factors. Measurement Science and Technology, 2002, 13, 218-221.	2.6	2
209	Australia's Role in Gravitational Wave Detection. Publications of the Astronomical Society of Australia, 2003, 20, 223-241.	3.4	2
210	Non-contacting actuation by radiation powered telemetry system. Classical and Quantum Gravity, 2004, 21, S1023-S1029.	4.0	2
211	High mechanical quality factor of calcium fluoride (CaF2) at room temperature. EPJ Applied Physics, 2005, 30, 189-192.	0.7	2
212	Self-Compensation of Astigmatism in Mode-Cleaners for Advanced Interferometers. Journal of Physics: Conference Series, 2006, 32, 457-463.	0.4	2
213	Identifying deterministic signals in simulated gravitational wave data: algorithmic complexity and the surrogate data method. Classical and Quantum Gravity, 2006, 23, 1801-1814.	4.0	2
214	Cryogenic interferometers. , 2012, , 261-276.		2
215	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2012, 85, .	4.7	2
216	Concepts and research for future detectors. General Relativity and Gravitation, 2014, 46, 1.	2.0	2

#	Article	IF	CITATIONS
217	Preventing transient parametric instabilities in high power gravitational wave detectors using thermal transient compensation. Classical and Quantum Gravity, 2017, 34, 145014.	4.0	2
218	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
219	Operation of an 8 m suspended Michelson interferometer. Review of Scientific Instruments, 1998, 69, 2773-2776.	1.3	1
220	Stresses in flexure pendulums for gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 256, 1-8.	2.1	1
221	Status of ACIGA High Power Test Facility for advanced interferometry. , 2004, , .		1
222	Telemetry system driven by radiation power for use in gravitational wave detectors. Review of Scientific Instruments, 2005, 76, 084503.	1.3	1
223	Suspensions with reduced violin string modes. Journal of Physics: Conference Series, 2006, 32, 353-361.	0.4	1
224	Scattering in sapphire test masses for gravitational wave detectors. Journal of Optics, 2009, 11, 125205.	1.5	1
225	Differential readout for a magnetic gradiometer. Sensors and Actuators A: Physical, 2009, 153, 5-12.	4.1	1
226	Study of three-mode parametric instability. Journal of Physics: Conference Series, 2010, 228, 012025.	0.4	1
227	Three-mode opto-acoustic interactions in optical cavities: introducing the three-mode opto-acoustic parametric amplifier. Proceedings of SPIE, 2010, , .	0.8	1
228	Vacuum control system for the AIGO gravitational wave detector. Vacuum, 2010, 85, 176-179.	3.5	1
229	CONTROLLING INSTABILITIES IN HIGH OPTICAL POWER INTERFEROMETERS. International Journal of Modern Physics D, 2011, 20, 2069-2074.	2.1	1
230	Thermal modulation for suppression of parametric instability in advanced gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 135001.	4.0	1
231	Contoured thermal deformation of mirror surface for detuning parametric instability in an optical cavity. Classical and Quantum Gravity, 2020, 37, 125003.	4.0	1
232	Designing arm cavities free of parametric instability for gravitational wave detectors. Classical and Quantum Gravity, 2020, 37, 075015.	4.0	1
233	Rotational isolation with neutrally buoyant suspension. Review of Scientific Instruments, 2020, 91, 054502.	1.3	1
234	Double end-mirror sloshing cavity for optical dilution of thermal noise in mechanical resonators. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1643.	2.1	1

#	Article	IF	CITATIONS
235	Cat-flap micro-pendulum for low noise optomechanics. Journal Physics D: Applied Physics, 2021, 54, 035104.	2.8	1
236	Parametric instability in the neutron star extreme matter observatory. Classical and Quantum Gravity, 2022, 39, 085007.	4.0	1
237	Acoustic and vibration isolation for a gravity gradiometer. Review of Scientific Instruments, 2022, 93, 064502.	1.3	1
238	Normal mode suppression in all metal cantilever vibration isolators. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 197, 275-281.	2.1	0
239	ACIGA: status report. , 2003, , .		0
240	Laser Interferometer Gravitational Wave Detectors—the Challenges. AIP Conference Proceedings, 2005, , .	0.4	0
241	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. DPRVDAQ0556-282176, 022001 (2007)]. Physical Review D, 2007, 76, .	4.7	0
242	Publisher's Note: Upper limit map of a background of gravitational waves [Phys. Rev. D 76 , 082003 (2007)]. Physical Review D, 2008, 77, .	4.7	0
243	Publisher's Note: Upper limits on gravitational wave emission from 78 radio pulsars [Phys. Rev. D76, 042001 (2007)]. Physical Review D, 2008, 77, .	4.7	0
244	Publisher's Note: All-sky search for periodic gravitational waves in LIGO S4 data [Phys. Rev. D77, 022001 (2008)]. Physical Review D, 2008, 77, .	4.7	0
245	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. D 76 , 022001 (2007)]. Physical Review D, 2008, 77, .	4.7	0
246	The Science Benefits of AIGO—a southern hemisphere interferometric gravitational wave detector. , 2010, , .		0
247	Publisher's Note: Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar [Phys. Rev. D83, 042001 (2011)]. Physical Review D, 2011, 83, .	4.7	0
248	NOISE PERFORMANCE OF A 72 m SUSPENDED FABRY–PÉROT CAVITY. International Journal of Modern Physics D, 2011, 20, 2063-2067.	2.1	0
249	Gravitational waves. , 0, , 3-15.		0
250	Sources of gravitational waves. , 0, , 16-41.		0
251	Gravitational wave detectors. , 0, , 42-70.		0

IF ARTICLE CITATIONS # Stabilising interferometers against high optical power effects., 0,, 244-258. 254 0 ET: A third generation observatory. , 0, , 298-316. The development of ground based gravitational wave astronomy and opportunities for Australia–China collaboration. International Journal of Modern Physics A, 2015, 30, 1545019. 256 1.5 0 The Asia-Australia Gravitational Wave Detector Concept., 2018,,. Characterization of a self-damped pendulum for vibration isolation. Review of Scientific Instruments, 2019, 90, 065103. 258 1.3 0

Lı Ju