
Daniela Montesarchio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/620041/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. , 2014, 141, 347-357.		296
2	G-quadruplex-based aptamers against protein targets in therapy and diagnostics. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1429-1447.	2.4	127
3	Polyvalent nucleic acid aptamers and modulation of their activity: a focus on the thrombin binding aptamer. , 2012, 136, 202-215.		89
4	Ion Transport through Lipid Bilayers by Synthetic Ionophores: Modulation of Activity and Selectivity. Accounts of Chemical Research, 2013, 46, 2781-2790.	15.6	89
5	Ruthenium-based complex nanocarriers for cancer therapy. Biomaterials, 2012, 33, 3770-3782.	11.4	71
6	Fluorescence Sensing Using DNA Aptamers in Cancer Research and Clinical Diagnostics. Cancers, 2017, 9, 174.	3.7	70
7	Interaction of Anticancer Ruthenium Compounds with Proteins: High-Resolution X-ray Structures and Raman Microscopy Studies of the Adduct between Hen Egg White Lysozyme and AziRu. Inorganic Chemistry, 2013, 52, 4157-4159.	4.0	67
8	Cholesterol-Based Nucleolipid-Ruthenium Complex Stabilized by Lipid Aggregates for Antineoplastic Therapy. Bioconjugate Chemistry, 2012, 23, 758-770.	3.6	60
9	Anticancer Ruthenium(III) Complexes and Ru(III)-Containing Nanoformulations: An Update on the Mechanism of Action and Biological Activity. Pharmaceuticals, 2019, 12, 146.	3.8	60
10	A New Competitive Fluorescence Assay for the Detection of Patulin Toxin. Analytical Chemistry, 2007, 79, 751-757.	6.5	59
11	G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects. , 2021, 217, 107649.		55
12	Anticancer Cationic Ruthenium Nanovectors: From Rational Molecular Design to Cellular Uptake and Bioactivity. Biomacromolecules, 2013, 14, 2549-2560.	5.4	53
13	Cationic liposomes as efficient nanocarriers for the drug delivery of an anticancer cholesterol-based ruthenium complex. Journal of Materials Chemistry B, 2015, 3, 3011-3023.	5.8	52
14	G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents. Molecules, 2015, 20, 17511-17532.	3.8	49
15	Antiproliferative effects of ruthenium-based nucleolipidic nanoaggregates in human models of breast cancer in vitro: insights into their mode of action. Scientific Reports, 2017, 7, 45236.	3.3	46
16	Exploring cellular uptake, accumulation and mechanism of action of a cationic Ru-based nanosystem in human preclinical models of breast cancer. Scientific Reports, 2019, 9, 7006.	3.3	46
17	5â€~-Modified G-Quadruplex Forming Oligonucleotides Endowed with Anti-HIV Activity: Synthesis and Biophysical Properties. Bioconjugate Chemistry, 2007, 18, 1194-1204.	3.6	45
18	Synthesis, Biophysical Characterization, and Anti-HIV Activity of Glyco-Conjugated G-Quadruplex-Forming Oligonucleotides. Bioconjugate Chemistry, 2008, 19, 607-616.	3.6	45

#	Article	IF	CITATIONS
19	Nucleolipid nanovectors as molecular carriers for potential applications in drug delivery. Molecular BioSystems, 2011, 7, 3075.	2.9	45
20	Investigating the Ruthenium Metalation of Proteins: X-ray Structure and Raman Microspectroscopy of the Complex between RNase A and AziRu. Inorganic Chemistry, 2013, 52, 10714-10716.	4.0	42
21	Interaction of anticancer Ru(iii) complexes with single stranded and duplex DNA model systems. Dalton Transactions, 2015, 44, 13914-13925.	3.3	42
22	Discovery of novel anti-HIV active G-quadruplex-forming oligonucleotides. Chemical Communications, 2011, 47, 2363-2365.	4.1	41
23	Design, Synthesis and Characterisation of Guanosineâ€Based Amphiphiles. Chemistry - A European Journal, 2011, 17, 13854-13865.	3.3	40
24	Ru ^{III} Complexes for Anticancer Therapy: The Importance of Being Nucleolipidic. European Journal of Organic Chemistry, 2017, 2017, 1100-1119.	2.4	39
25	AS1411-decorated niosomes as effective nanocarriers for Ru(<scp>iii</scp>)-based drugs in anticancer strategies. Journal of Materials Chemistry B, 2018, 6, 5368-5384.	5.8	39
26	Antiâ€VEGF DNAâ€based aptamers in cancer therapeutics and diagnostics. Medicinal Research Reviews, 2021, 41, 464-506.	10.5	39
27	A new ferrocenemethyl-thymidine nucleoside: Synthesis, incorporation into oligonucleotides and optical spectroscopic studies on the resulting single strand, duplex and triplex structures. Tetrahedron, 1999, 55, 14435-14450.	1.9	37
28	Antitumour activity of resveratrol on human melanoma cells: A possible mechanism related to its interaction with malignant cell telomerase. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2843-2851.	2.4	37
29	G-Quadruplex on Oligo Affinity Support (G4-OAS): An Easy Affinity Chromatography-Based Assay for the Screening of G-Quadruplex Ligands. Analytical Chemistry, 2014, 86, 4126-4130.	6.5	36
30	Fluorescent Thrombin Binding Aptamer-Tagged Nanoparticles for an Efficient and Reversible Control of Thrombin Activity. ACS Applied Materials & Interfaces, 2017, 9, 35574-35587.	8.0	36
31	Exploring the conformational behaviour and aggregation properties of lipid-conjugated AS1411 aptamers. International Journal of Biological Macromolecules, 2018, 118, 1384-1399.	7.5	36
32	Fluorescence Enhancement upon G-Quadruplex Folding: Synthesis, Structure, and Biophysical Characterization of a Dansyl/Cyclodextrin-Tagged Thrombin Binding Aptamer. Bioconjugate Chemistry, 2013, 24, 1917-1927.	3.6	35
33	Tandem application of ligand-based virtual screening and G4-OAS assay to identify novel G-quadruplex-targeting chemotypes. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1341-1352.	2.4	35
34	Disentangling the Structure–Activity Relationships of Naphthalene Diimides as Anticancer G-Quadruplex-Targeting Drugs. Journal of Medicinal Chemistry, 2021, 64, 3578-3603.	6.4	33
35	A new solid-phase synthesis of oligonucleotides 3′-conjugated with peptides. Bioorganic and Medicinal Chemistry, 1999, 7, 395-400.	3.0	32
36	Solid phase synthesis of oligonucleotides tethered to oligo-glucose phosphate tails. Tetrahedron, 2002, 58, 6697-6704.	1.9	32

#	Article	IF	CITATIONS
37	A first-in-class and a fished out anticancer platinum compound: cis-[PtCl ₂ (NH ₃) ₂] and cis-[Ptl ₂ (NH ₃) ₂] compared for their reactivity towards DNA model systems. Dalton Transactions, 2016, 45, 8587-8600.	3.3	32
38	Insights into the G-rich VEGF-binding aptamer V7t1: when two G-quadruplexes are better than one!. Nucleic Acids Research, 2019, 47, 8318-8331.	14.5	32
39	1-Substituted 2′-deoxyinosine analogues. Journal of the Chemical Society Perkin Transactions 1, 1997, , 2079-2082.	0.9	31
40	Novel Amphiphilic Cyclic Oligosaccharides:  Synthesis and Self-Aggregation Properties. Journal of Organic Chemistry, 2007, 72, 9679-9689.	3.2	31
41	A new design for nucleolipid-based Ru(iii) complexes as anticancer agents. Dalton Transactions, 2013, 42, 16697.	3.3	31
42	Trifluoromethyl derivatives of canonical nucleosides: synthesis and bioactivity studies. MedChemComm, 2013, 4, 1405.	3.4	30
43	Glycomimetics as Decorating Motifs for Oligonucleotides:Â Solid-Phase Synthesis, Stability, and Hybridization Properties of Carbopeptoidâ^'Oligonucleotide Conjugates. Bioconjugate Chemistry, 2005, 16, 1299-1309.	3.6	29
44	On the binding of naphthalene diimides to a human telomeric G-quadruplex multimer model. International Journal of Biological Macromolecules, 2021, 166, 1320-1334.	7.5	29
45	An Efficient and Versatile Solid-Phase Synthesis of 5â€~- and 3â€~-Conjugated Oligonucleotides. Organic Letters, 2005, 7, 4927-4930.	4.6	28
46	Cyclic Phosphate-Linked Oligosaccharides:Â Synthesis and Conformational Behavior of Novel Cyclic Oligosaccharide Analogues. Journal of Organic Chemistry, 2006, 71, 3395-3408.	3.2	28
47	PEG-Supported Synthesis of Cyclic Oligodeoxyribonucleotides. Nucleosides & Nucleotides, 1993, 12, 21-30.	0.5	27
48	Synthesis of [1-15N]-Labeled 2'-Deoxyinosine and 2'-Deoxyadenosine. Journal of Organic Chemistry, 1995, 60, 2251-2253.	3.2	27
49	Phosphocholine-decorated superparamagnetic iron oxide nanoparticles: defining the structure and probing in vivo applications. Nanoscale, 2016, 8, 10078-10086.	5.6	27
50	Shedding light on the interaction of polydatin and resveratrol with G-quadruplex and duplex DNA: a biophysical, computational and biological approach. International Journal of Biological Macromolecules, 2020, 151, 1163-1172.	7.5	27
51	Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics, 2021, 13, 1897.	4.5	27
52	Synthesis, self-aggregation and bioactivity properties of a cationic aminoacyl surfactant, based on a new class of highly functionalized nucleolipids. European Journal of Medicinal Chemistry, 2012, 57, 429-440.	5.5	26
53	Dimeric and Multimeric DNA Aptamers for Highly Effective Protein Recognition. Molecules, 2020, 25, 5227.	3.8	26
54	Design, Synthesis and Characterisation of a Fluorescently Labelled CyPLOS Ionophore. Chemistry - A European Journal, 2010, 16, 13757-13772.	3.3	25

#	Article	IF	CITATIONS
55	Breast Cancer Chemotherapeutic Options: A General Overview on the Preclinical Validation of a Multi-Target Ruthenium(III) Complex Lodged in Nucleolipid Nanosystems. Cells, 2020, 9, 1412.	4.1	25
56	Modulating the activity of oligonucleotides by carbohydrate conjugation: solid phase synthesis of sucrose-oligonucleotide hybrids. Organic and Biomolecular Chemistry, 2004, 2, 1879.	2.8	24
57	Controlled Pore Glass-based oligonucleotide affinity support: towards High Throughput Screening methods for the identification of conformation-selective G-quadruplex ligands. Analytica Chimica Acta, 2018, 1030, 133-141.	5.4	24
58	Tailoring a lead-like compound targeting multiple G-quadruplex structures. European Journal of Medicinal Chemistry, 2019, 163, 295-306.	5.5	24
59	In-water reactivity of nucleosides and nucleotides: one-step preparation and biological evaluation of novel ferrocenyl-derivatives. Tetrahedron, 2004, 60, 6555-6563.	1.9	23
60	CyPLOS: a new family of synthetic ionophores. Organic and Biomolecular Chemistry, 2009, 7, 1060.	2.8	23
61	Fine-tuning the properties of the thrombin binding aptamer through cyclization: Effect of the 5′-3′ connecting linker on the aptamer stability and anticoagulant activity. Bioorganic Chemistry, 2020, 94, 103379.	4.1	23
62	Design, Synthesis and Characterization of Cyclic NU172 Analogues: A Biophysical and Biological Insight. International Journal of Molecular Sciences, 2020, 21, 3860.	4.1	23
63	Automated solid phase synthesis of cyclic oligonucleotides: a further improvement. Bioorganic and Medicinal Chemistry, 1995, 3, 1325-1329.	3.0	22
64	Benzodifuran Derivatives as Potential Antiproliferative Agents: Possible Correlation between Their Bioactivity and Aggregation Properties. ChemPlusChem, 2017, 82, 251-260.	2.8	22
65	Stability Is Not Everything: The Case of the Cyclisation of a Thrombinâ€Binding Aptamer. ChemBioChem, 2019, 20, 1789-1794.	2.6	22
66	Interference of Polydatin/Resveratrol in the ACE2:Spike Recognition during COVID-19 Infection. A Focus on Their Potential Mechanism of Action through Computational and Biochemical Assays. Biomolecules, 2021, 11, 1048.	4.0	22
67	Solid-Phase Synthesis of Cyclic PNA and PNAâ ``DNA Chimeras. Organic Letters, 2006, 8, 2015-2018.	4.6	21
68	Developing functionalized Fe ₃ O ₄ –Au nanoparticles: a physico-chemical insight. Physical Chemistry Chemical Physics, 2015, 17, 6087-6097.	2.8	21
69	Benzodifurans for biomedical applications: BZ4, a selective anti-proliferative and anti-amyloid lead compound. Future Medicinal Chemistry, 2019, 11, 285-302.	2.3	21
70	Synthesis and Triple Helix Formation by Alternate Strand Recognition of Oligonucleotides Containing 3â€~-3â€~ Phosphodiester Bonds. Journal of Organic Chemistry, 1997, 62, 9024-9030.	3.2	20
71	The role of G-quadruplex structures of LIGS-generated aptamers R1.2 and R1.3 in IgM specific recognition. International Journal of Biological Macromolecules, 2019, 133, 839-849.	7.5	20
72	Trifunctionalized Naphthalene Diimides and Dimeric Analogues as G-Quadruplex-Targeting Anticancer Agents Selected by Affinity Chromatography. International Journal of Molecular Sciences, 2020, 21, 1964.	4.1	20

#	Article	IF	CITATIONS
73	Carbohydrate-based synthetic ion transporters. Carbohydrate Research, 2012, 356, 62-74.	2.3	19
74	Huntingtin protein: A new option for fixing the Huntington's disease countdown clock. Neuropharmacology, 2018, 135, 126-138.	4.1	19
75	On the interaction of an anticancer trisubstituted naphthalene diimide with G-quadruplexes of different topologies: a structural insight. Nucleic Acids Research, 2020, 48, 12380-12393.	14.5	19
76	Excess electron transfer in G-quadruplex. Chemical Communications, 2004, , 1756-1757.	4.1	17
77	On the Compatibility of Azides in Phosphoramiditeâ€Based Couplings: Synthesis of a Novel, Convertible Azidoâ€Functionalized CyPLOS Analogue. European Journal of Organic Chemistry, 2011, 2011, 1155-1165.	2.4	17
78	Plantâ€Derived Stilbenoids as DNAâ€Binding Agents: From Monomers to Dimers. Chemistry - A European Journal, 2021, 27, 8832-8845.	3.3	17
79	Synthesis and characterization of new 3â€2-3â€2 linked oligodeoxyribonucleotides for alternate strand triple helix formation. Tetrahedron, 1999, 55, 9899-9914.	1.9	16
80	New nucleoside based solid supports. Synthesis of 5′,3′-derivatized thymidine analoguesElectronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b1/b107200p/. Chemical Communications, 2001, , 2598-2599.	4.1	16
81	Solid phase synthesis of DNA-3′-PNA chimeras by using Bhoc/Fmoc PNA monomers. Tetrahedron, 2001, 57, 9481-9486.	1.9	16
82	Anti-HIV activity of new higher order G-quadruplex aptamers obtained from tetra-end-linked oligonucleotides. Organic and Biomolecular Chemistry, 2018, 16, 2349-2355.	2.8	16
83	"Dressing up―an Old Drug: An Aminoacyl Lipid for the Functionalization of Ru(III)-Based Anticancer Agents. ACS Biomaterials Science and Engineering, 2018, 4, 163-174.	5.2	16
84	Synthesis and NMR characterization of a novel crown-ether ring-fused uridine analogue. Tetrahedron, 2010, 66, 6769-6774.	1.9	15
85	Elucidating the reactivity of Pt(II) complexes with (O,S) bidentate ligands towards DNA model systems. Journal of Inorganic Biochemistry, 2016, 160, 198-209.	3.5	15
86	Interfacing aptamers, nanoparticles and graphene in a hierarchical structure for highly selective detection of biomolecules in OECT devices. Scientific Reports, 2021, 11, 9380.	3.3	15
87	Synthesis of 4-Substituted Pyrimidine 2′,3′-Dideoxynucleosides. Nucleosides & Nucleotides, 1991, 10, 1719-1728.	0.5	14
88	Reaction of 3′,5′-di-O-acetyl-2′-deoxyinosine with the chlorinating agent PPh3–CCl4: synthesis of the 6-chloroderivative and of a new base linked dimer, useful intermediate to15N-1-labelled 2′-deoxyinosine. Journal of the Chemical Society Perkin Transactions 1, 1994, , 923-925.	0.9	14
89	Synthesis and Preliminary Biological Evaluation of a New Pyridocarbazole Derivative Covalently Linked to a Thymidine Nucleoside as a Potential Targeted Antitumoral Agent. I. Chemical and Pharmaceutical Bulletin, 2003, 51, 971-974.	1.3	14
90	Safety and Efficacy Evaluation In Vivo of a Cationic Nucleolipid Nanosystem for the Nanodelivery of a Ruthenium(III) Complex with Superior Anticancer Bioactivity. Cancers, 2021, 13, 5164.	3.7	14

#	Article	IF	CITATIONS
91	Synthesis of thymidine dimers containing a new internucleosidic amide linkage and their incorporation into oligodeoxyribonucleotides. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 1647-1652.	2.2	13
92	Synthetic studies on the glycosylation of the base residues of inosine and uridine. Journal of the Chemical Society Perkin Transactions 1, 1999, , 3489-3493.	0.9	13
93	Solid-Phase Synthesis of Glyco-Oligonucleotide Conjugates. Synlett, 2001, 2001, 0745-0748.	1.8	13
94	Tuning the Polymorphism of the Anti-VEGF G-rich V7t1 Aptamer by Covalent Dimeric Constructs. International Journal of Molecular Sciences, 2020, 21, 1963.	4.1	13
95	Automated Synthesis of Cyclic Oligodeoxyribonucleotides via Phosphoramidite Method. Nucleosides & Nucleotides, 1993, 12, 351-358.	0.5	12
96	Design, Synthesis, and Hybridisation of Waterâ€Soluble, Peptoid Nucleic Acid Oligomers Tagged with Thymine. European Journal of Organic Chemistry, 2009, 2009, 6113-6120.	2.4	12
97	Synthesis and conformational analysis of a novel carbohydrate-fused bis-crown ether: crown-CyPLOS. Tetrahedron, 2009, 65, 9694-9701.	1.9	12
98	Identification of Effective Anticancer G-Quadruplex-Targeting Chemotypes through the Exploration of a High Diversity Library of Natural Compounds. Pharmaceutics, 2021, 13, 1611.	4.5	12
99	Improved synthesis of isoguanosine and 6-substituted xanthosine derivatives. Journal of the Chemical Society Perkin Transactions 1, 1995, , 15.	0.9	11
100	Nanostructuring of CyPLOS (Cyclic Phosphate-Linked OligoSaccharides), novel saccharide-based synthetic ion transporters. Journal of Colloid and Interface Science, 2011, 354, 718-724.	9.4	11
101	Synthesis, DNA binding studies, and antiproliferative activity of novel Pt(II)-complexes with an L-alanyl-based ligand. Journal of Inorganic Biochemistry, 2020, 203, 110868.	3.5	11
102	Charge-Transfer Interactions Stabilize G-Quadruplex-Forming Thrombin Binding Aptamers and Can Improve Their Anticoagulant Activity. International Journal of Molecular Sciences, 2021, 22, 9510.	4.1	11
103	On the mechanism of ion transport through lipid membranes mediated by PEGylated cyclic oligosaccharides (CyPLOS): An ESR study. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2074-2082.	2.6	10
104	A Facile Solid-Phase Strategy for the Synthesis of Oligonucleotide-Tetraphenylporphyrin Conjugates. European Journal of Organic Chemistry, 2000, 2000, 1013-1018.	2.4	9
105	Synthesis of a Cholesteryl-HEG Phosphoramidite Derivative and Its Application to Lipid-conjugates of the Anti-HIV 5'TGGGAG3' Hotoda's Sequence. Molecules, 2012, 17, 12378-12392.	3.8	9
106	On the pH-Modulated Ru-Based Prodrug Activation Mechanism. Inorganic Chemistry, 2019, 58, 1216-1223.	4.0	9
107	Natural compounds from <i>Juncus</i> plants interacting with telomeric and oncogene C-quadruplex structures as potential anticancer agents. Organic and Biomolecular Chemistry, 2021, 19, 9953-9965.	2.8	9
108	Affinity Chromatographyâ€Based Assays for the Screening of Potential Ligands Selective for Gâ€Quadruplex Structures. ChemistryOpen, 2022, 11, .	1.9	9

Daniela Montesarchio

#	Article	IF	CITATIONS
109	Bioengineered lipophilic Ru(III) complexes as potential anticancer agents. , 2022, 139, 213016.		9
110	Synthesis of 2′,3′-dideoxy-2′,3′-didehydronucleoside analogues as potential anti HIV agents. Bioorgani and Medicinal Chemistry Letters, 1992, 2, 315-318.	^C 2.2	8
111	Thermodynamics of a 24-Mer Triple Helix Formation and Stability. Magyar Apróvad Közlemények, 1999, 56, 1177-1184.	1.4	8
112	Effect of lengthening of peptide backbone by insertion of chiral ?-homo amino acid residues: Conformational behavior of linear peptides containing alternatingL-leucine and ?-homoL-leucine residues. Biopolymers, 2000, 53, 140-149.	2.4	8
113	Physico-chemical studies of a DNA triplex containing a new ferrocenemethyl-thymidine residue in the third strand. Biophysical Chemistry, 2003, 104, 259-270.	2.8	8
114	DNA Binding Mode Analysis of a Core-Extended Naphthalene Diimide as a Conformation-Sensitive Fluorescent Probe of G-Quadruplex Structures. International Journal of Molecular Sciences, 2021, 22, 10624.	4.1	8
115	A Facile Solid-Phase Synthesis of Oligonucleotides Containing a 3′â~'3′ Phosphodiester Bond for Alternate Strand Triple-Helix Formation. European Journal of Organic Chemistry, 1998, 1998, 2119-2125.	2.4	7
116	An efficient solid phase synthesis of 5â€2-phosphodiester and phosphoramidate monoester nucleoside analogues. Chemical Communications, 2005, , 2586.	4.1	7
117	<i>N(3)</i> â€Protection of Thymidine with Boc for an Easy Synthetic Access to Sugarâ€Alkylated Nucleoside Analogs. Chemistry and Biodiversity, 2012, 9, 589-597.	2.1	7
118	Fighting the Huntington's Disease with a G-Quadruplex-Forming Aptamer Specifically Binding to Mutant Huntingtin Protein: Biophysical Characterization, In Vitro and In Vivo Studies. International Journal of Molecular Sciences, 2022, 23, 4804.	4.1	7
119	Crystal-state conformation of C?,?-dialkylated peptides containing chiral ?-homo-residues. Journal of Peptide Science, 2001, 7, 15-26.	1.4	6
120	Targeting duplex DNA with DNA-PNA chimeras? Physico-chemical characterization of a triplex DNA-PNA/DNA/DNA. Biopolymers, 2004, 73, 434-442.	2.4	6
121	Novel Cyclic Phosphate-Linked Oligosaccharides (CyPLOSs) Covalently Immobilized on Solid Supports for Potential Cation Scavenging. European Journal of Organic Chemistry, 2007, 2007, 3849-3858.	2.4	6
122	Lipooligosaccharides as Amphiphiles to Build Liposomes for Effective Drug Delivery: The Case of Anticancer Ruthenium Complexâ€Based Aggregates. ChemistrySelect, 2016, 1, 2129-2139.	1.5	6
123	6-Chloroxanthosine, a Useful Intermediate for the Efficient Syntheses of [6- ¹⁵ N]-Isoguanosine, Isoinosine and Other Purine Nucleoside Analogues. Nucleosides & Nucleotides, 1997, 16, 183-191.	0.5	5
124	Calorimetric, spectroscopic and computational investigation of DNA triplexes containing a 3′–3′ internucleoside junction. Physical Chemistry Chemical Physics, 1999, 1, 5045-5049.	2.8	5
125	Physico-chemical studies on DNA triplexes containing an alternate third strand with a non-nucleotide linker. International Journal of Biological Macromolecules, 2001, 28, 387-394.	7.5	5
126	Ionophores at work: Exploring the interaction of guanosine-based amphiphiles with phospholipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2392-2401.	2.6	5

#	Article	IF	CITATIONS
127	Synthesis, Antiproliferative Activity, and DNA Binding Studies of Nucleoamino Acid-Containing Pt(II) Complexes. Pharmaceuticals, 2020, 13, 284.	3.8	5
128	A new synthesis of oxanosine and $2\hat{a}\in^2$ -deoxyoxanosine. Tetrahedron Letters, 1998, 39, 7397-7400.	1.4	4
129	New Solid Supports Linking Nucleoside Scaffolds. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 695-697.	1.1	4
130	Synthesis and DNA Binding Properties of DNA-PNA Chimeras. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1089-1091.	1.1	4
131	Hairpin ODN-based ligands as potential inhibitors of HMGB1 cytokine activity. RSC Advances, 2013, 3, 12176.	3.6	4
132	Guanine-based amphiphiles: synthesis, ion transport properties and biological activity. Bioorganic and Medicinal Chemistry, 2015, 23, 1149-1156.	3.0	4
133	Synthesis and conformation of dipeptide taste ligands containinghomo-β-amino acid residues. Journal of Physical Organic Chemistry, 1999, 12, 577-587.	1.9	3
134	New 3′-3′ Linkers for Alternate Strand Triplex Forming Oligonucleotides. Nucleosides & Nucleotides, 1999, 18, 1639-1640.	0.5	3
135	Glycosylations of Inosine and Uridine Nucleoside Bases and Synthesis of the New 1-(β-D-Glucopyranosyl)-Inosine-5′, 6″-diphosphate. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 1289-1299.	1.1	3
136	Cyclic Uridine Diphosphate Glucose: A New Pyrimidine Analog of Cyclic ADP Ribose. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 663-666.	1.1	3
137	G-quadruplex forming oligonucleotides as finely tunable aptamers: towards better DNA mimics. Nucleic Acids Symposium Series, 2008, 52, 9-10.	0.3	3
138	Synthesis and Biophysical Characterization of G-Rich Oligonucleotides Conjugated with Sugar-Phosphate Tails. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1225-1229.	1.1	2
139	G-Quadruplex Nucleic Acids. Journal of Nucleic Acids, 2010, 2010, 1-2.	1.2	2
140	Not unusual, just different! Chemistry, biology and applications of G-quadruplex nucleic acids. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1201-1204.	2.4	2
141	Synthesis and Characterization of Multifunctional Nanovesicles Composed of POPC Lipid Molecules for Nuclear Imaging. Molecules, 2021, 26, 6591.	3.8	2
142	Improved Synthesis of 2′,3′-Dideoxycytidine (d2C) and Its Correlated Nucleoside Analogues. Nucleosides & Nucleotides, 1993, 12, 981-992.	0.5	1
143	Title is missing!. International Journal of Peptide Research and Therapeutics, 1997, 4, 129.	0.1	1
144	β-amino acid residues: Conformational characterization of an N- and C-protectedhomo-β-(S)-leucine. International Journal of Peptide Research and Therapeutics, 1997, 4, 129-134.	0.1	1

#	Article	IF	CITATIONS
145	Thermodynamic and conformational properties of DNA triplexes containing 3′,3′-phosphodiester bond. Thermochimica Acta, 2001, 372, 129-136.	2.7	1
146	Oligonucleotides containing a lysine residue as 3′–3′ junction for alternate strand triple helix formation. Bioorganic and Medicinal Chemistry, 2001, 9, 2895-2900.	3.0	1
147	New Nucleoside-Based Polymeric Supports for the Solid Phase Synthesis of Ribose-Modified Nucleoside Analogues. Synlett, 2004, 2004, 1975-1979.	1.8	1
148	2-(Phenylthio)ethyl as a Novel Two-Stage Base Protecting Group for Thymidine Analogues. Synlett, 2006, 2006, 845-848.	1.8	1
149	A versatile synthetic approach for the development of libraries of 5', 3'-bis-conjugated oligonucleotides. Nucleic Acids Symposium Series, 2008, 52, 299-300.	0.3	1
150	Crown ether ring-fused nucleosides: synthesis and conformational properties. Nucleic Acids Symposium Series, 2008, 52, 667-668.	0.3	1
151	Cyclic phosphate-linked oligosaccharides (CyPLOS): Novel carbohydrate-based synthetic ion transporters. Pure and Applied Chemistry, 2011, 84, 87-96.	1.9	1
152	Studies on Alternate Strand Triple Helix Formation by Oligodeoxyribonucleotides Containing A 3â€2-3â€2 Phosphodiester Bond. Nucleosides & Nucleotides, 1998, 17, 1709-1716.	0.5	0
153	Fully automated synthesis of peptide-oligonucleotide conjugates. , 2002, , 784-785.		0