Tie-Rui Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6199350/tie-rui-zhang-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28,543 163 292 94 h-index g-index citations papers 12.8 35,076 7.74 323 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
292	Artificial photocatalytic nitrogen fixation: Where are we now? Where is its future?. <i>Molecular Catalysis</i> , 2022 , 518, 112107	3.3	O
291	Vertical Graphene Array for Efficient Electrocatalytic Reduction of Oxygen to Hydrogen Peroxide. <i>Nano Energy</i> , 2022 , 107046	17.1	1
2 90	Deciphering the Dynamic Structure Evolution of Fe- and Ni-Codoped CoS2 for Enhanced Water Oxidation. <i>ACS Catalysis</i> , 2022 , 12, 3743-3751	13.1	4
289	Strain Engineering: A Boosting Strategy for Photocatalysis Advanced Materials, 2022, e2200868	24	5
288	Carbon Dots as New Building Blocks for Electrochemical Energy Storage and Electrocatalysis. <i>Advanced Energy Materials</i> , 2022 , 12, 2103426	21.8	13
287	Fe Single-Atom Catalysts on MOF-5 Derived Carbon for Efficient Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. <i>Advanced Energy Materials</i> , 2022 , 12, 2102688	21.8	23
286	Ordered PtFeIr Intermetallic Nanowires Prepared through a Silica-Protection Strategy for the Oxygen Reduction Reaction. <i>Angewandte Chemie</i> , 2022 , 134,	3.6	2
285	Mesopore-rich Fe-N-C catalyst with FeN -O-NC Single Atom Sites Delivers Remarkable Oxygen Reduction Reaction Performance in Alkaline Media <i>Advanced Materials</i> , 2022 , e2202544	24	27
284	Nanostructured Photothermal Materials for Environmental and Catalytic Applications <i>Molecules</i> , 2021 , 26,	4.8	2
283	Efficient photocatalytic aerobic oxidation of bisphenol A via gas-liquid-solid triphase interfaces. <i>Materials Today Energy</i> , 2021 , 100908	7	2
282	A Rhenium Single-Atom Catalyst for the Electrocatalytic Oxygen Reduction Reaction <i>ChemPlusChem</i> , 2021 , 86, 1635-1639	2.8	1
281	Flux-Assisted Low Temperature Synthesis of SnNb2O6 Nanoplates with Enhanced Visible Light Driven Photocatalytic H2-Production. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 23219-23225	3.8	1
280	Molten NaCl-Assisted Synthesis of Porous Fe-N-C Electrocatalysts with a High Density of Catalytically Accessible FeN4[Active Sites and Outstanding Oxygen Reduction Reaction Performance. <i>Advanced Energy Materials</i> , 2021 , 11, 2100219	21.8	58
279	Electronically Modified Atomic Sites Within a Multicomponent Co/Cu Composite for Efficient Oxygen Electroreduction. <i>Advanced Energy Materials</i> , 2021 , 11, 2100303	21.8	26
278	Recent Advancements of Porphyrin-Like Single-Atom Catalysts: Synthesis and Applications. <i>Small Structures</i> , 2021 , 2, 2100007	8.7	34
277	Efficient Combination of G-C N and CDs for Enhanced Photocatalytic Performance: A Review of Synthesis, Strategies, and Applications. <i>Small</i> , 2021 , 17, e2007523	11	32
276	Recent Advances in Noncontact External-Field-Assisted Photocatalysis: From Fundamentals to Applications. <i>ACS Catalysis</i> , 2021 , 11, 4739-4769	13.1	59

(2021-2021)

275	MIL-101-Derived Mesoporous Carbon Supporting Highly Exposed Fe Single-Atom Sites as Efficient Oxygen Reduction Reaction Catalysts. <i>Advanced Materials</i> , 2021 , 33, e2101038	24	94
274	Rationally Designed NiNi3S2 Interfaces for Efficient Overall Water Electrolysis. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2100078	1.6	10
273	Oxygen Reduction Reaction: Electronically Modified Atomic Sites Within a Multicomponent Co/Cu Composite for Efficient Oxygen Electroreduction (Adv. Energy Mater. 17/2021). <i>Advanced Energy Materials</i> , 2021 , 11, 2170067	21.8	O
272	In Situ Detection of Low Amounts of Ammonia. <i>Trends in Chemistry</i> , 2021 , 3, 339-341	14.8	1
271	Layered double hydroxide-based photocatalytic materials toward renewable solar fuels production. <i>Informa</i> (Informa)	23.1	42
270	Fe?N?C Electrocatalysts with Densely Accessible Fe?N4 Sites for Efficient Oxygen Reduction Reaction. <i>Advanced Functional Materials</i> , 2021 , 31, 2102420	15.6	29
269	Foreword to the Special Issue on Photocatalysis. <i>Transactions of Tianjin University</i> , 2021 , 27, 279-279	2.9	
268	Nitrogen-doped ZnNi oxide for electrochemical reduction of carbon dioxide in sea water. <i>Rare Metals</i> , 2021 , 40, 3117	5.5	3
267	Engineering local coordination environments and site densities for high-performance Fe-N-C oxygen reduction reaction electrocatalysis. <i>SmartMat</i> , 2021 , 2, 154-175	22.8	33
266	Emerging Solar Photocatalysis. <i>Solar Rrl</i> , 2021 , 5, 2100252	7.1	1
265 265	Emerging Solar Photocatalysis. <i>Solar Rrl</i> , 2021 , 5, 2100252 Sub-3 nm Ultrafine Cu O for Visible Light Driven Nitrogen Fixation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2554-2560	7.1 16.4	51
	Sub-3 nm Ultrafine Cu O for Visible Light Driven Nitrogen Fixation. <i>Angewandte Chemie</i> -	,	
265	Sub-3 nm Ultrafine Cu O for Visible Light Driven Nitrogen Fixation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2554-2560 A Metal-Segregation Approach to Generate CoMn Alloy for Enhanced Photothermal Conversion of	16.4	51
265 264	Sub-3 nm Ultrafine Cu O for Visible Light Driven Nitrogen Fixation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2554-2560 A Metal-Segregation Approach to Generate CoMn Alloy for Enhanced Photothermal Conversion of Syngas to Light Olefins. <i>Solar Rrl</i> , 2021 , 5, 2000488 Enhanced solar photoreduction of CO2 to liquid fuel over rGO grafted NiO-CeO2 heterostructure	7.1	51 8 18
265264263	Sub-3 nm Ultrafine Cu O for Visible Light Driven Nitrogen Fixation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2554-2560 A Metal-Segregation Approach to Generate CoMn Alloy for Enhanced Photothermal Conversion of Syngas to Light Olefins. <i>Solar Rrl</i> , 2021 , 5, 2000488 Enhanced solar photoreduction of CO2 to liquid fuel over rGO grafted NiO-CeO2 heterostructure nanocomposite. <i>Nano Energy</i> , 2021 , 79, 105483 Band structure engineering and defect control of Ta3N5 with enhanced photoelectrochemical	7.1 17.1	51 8 18
265264263262	Sub-3 nm Ultrafine Cu O for Visible Light Driven Nitrogen Fixation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2554-2560 A Metal-Segregation Approach to Generate CoMn Alloy for Enhanced Photothermal Conversion of Syngas to Light Olefins. <i>Solar Rrl</i> , 2021 , 5, 2000488 Enhanced solar photoreduction of CO2 to liquid fuel over rGO grafted NiO-CeO2 heterostructure nanocomposite. <i>Nano Energy</i> , 2021 , 79, 105483 Band structure engineering and defect control of Ta3N5 with enhanced photoelectrochemical water oxidation performance. <i>Science Bulletin</i> , 2021 , 66, 651-652 Substitutionally Dispersed High-Oxidation CoOx Clusters in the Lattice of Rutile TiO2 Triggering Efficient Co?Ti Cooperative Catalytic Centers for Oxygen Evolution Reactions. <i>Advanced Functional</i>	7.1 17.1 10.6	51 8 18
265264263262261	Sub-3 nm Ultrafine Cu O for Visible Light Driven Nitrogen Fixation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 2554-2560 A Metal-Segregation Approach to Generate CoMn Alloy for Enhanced Photothermal Conversion of Syngas to Light Olefins. <i>Solar Rrl</i> , 2021 , 5, 2000488 Enhanced solar photoreduction of CO2 to liquid fuel over rGO grafted NiO-CeO2 heterostructure nanocomposite. <i>Nano Energy</i> , 2021 , 79, 105483 Band structure engineering and defect control of Ta3N5 with enhanced photoelectrochemical water oxidation performance. <i>Science Bulletin</i> , 2021 , 66, 651-652 Substitutionally Dispersed High-Oxidation CoOx Clusters in the Lattice of Rutile TiO2 Triggering Efficient Co?Ti Cooperative Catalytic Centers for Oxygen Evolution Reactions. <i>Advanced Functional Materials</i> , 2021 , 31, 2009610 Electrocatalytic Oxygen Reduction to Hydrogen Peroxide: From Homogeneous to Heterogeneous	16.4 7.1 17.1 10.6 15.6	51 8 18 0 38 45

257	Exploiting Ru-Induced Lattice Strain in CoRu Nanoalloys for Robust Bifunctional Hydrogen Production. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3290-3298	16.4	120
256	Atomic-Level Charge Separation Strategies in Semiconductor-Based Photocatalysts. <i>Advanced Materials</i> , 2021 , 33, e2005256	24	78
255	Research Progress on Triphase Interface Electrocatalytic Carbon Dioxide Reduction. <i>Acta Chimica Sinica</i> , 2021 , 79, 369	3.3	3
254	Fe-Based Catalysts for the Direct Photohydrogenation of CO2 to Value-Added Hydrocarbons. <i>Advanced Energy Materials</i> , 2021 , 11, 2002783	21.8	35
253	Solar Photocatalysis. Solar Rrl, 2021 , 5, 2100037	7.1	8
252	Heterostructured MoSe2/Oxygen-Terminated Ti3C2 MXene Architectures for Efficient Electrocatalytic Hydrogen Evolution. <i>Energy & Description of the Electrocatalytic Hydrogen Evolution of the Electrocatalytic Hydrogen Electrocatalytic Hy</i>	4.1	24
251	Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives. <i>Nano Research</i> , 2021 , 14, 3795	10	16
250	Titania-Supported Ni P/Ni Catalysts for Selective Solar-Driven CO Hydrogenation. <i>Advanced Materials</i> , 2021 , 33, e2103248	24	12
249	Revealing Ammonia Quantification Minefield in Photo/Electrocatalysis. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 21728-21731	16.4	10
248	Revealing Ammonia Quantification Minefield in Photo/Electrocatalysis. <i>Angewandte Chemie</i> , 2021 , 133, 21896-21899	3.6	3
247	Atomic Cation-Vacancy Engineering of NiFe-Layered Double Hydroxides for Improved Activity and Stability towards the Oxygen Evolution Reaction. <i>Angewandte Chemie</i> , 2021 , 133, 24817	3.6	5
246	Photothermal-Assisted Triphase Photocatalysis Over a Multifunctional Bilayer Paper. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 22963-22969	16.4	16
245	Atomic Cation-Vacancy Engineering of NiFe-Layered Double Hydroxides for Improved Activity and Stability towards the Oxygen Evolution Reaction. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 24612-24619	16.4	31
244	Photothermal-Assisted Triphase Photocatalysis Over a Multifunctional Bilayer Paper. <i>Angewandte Chemie</i> , 2021 , 133, 23145	3.6	O
243	Charge localization to optimize reactant adsorption on KCu7S4/CuO interfacial structure toward selective CO2 electroreduction. <i>Applied Catalysis B: Environmental</i> , 2021 , 298, 120531	21.8	5
242	Three-phase electrochemistry for green ethylene production. <i>Current Opinion in Electrochemistry</i> , 2021 , 30, 100789	7.2	2
241	Three Phase Interface Engineering for Advanced Catalytic Applications. <i>ACS Applied Energy Materials</i> , 2021 , 4, 1045-1052	6.1	10
240	Complex alloy nanostructures as advanced catalysts for oxygen electrocatalysis: from materials design to applications. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 23142-23161	13	21

(2020-2020)

239	Recent Advances in the Development of Single-Atom Catalysts for Oxygen Electrocatalysis and ZincAir Batteries. <i>Advanced Energy Materials</i> , 2020 , 10, 2003018	21.8	72
238	Reassessing effects of Zn2+ toward oxygen electrocatalytic activity in ternary spinel. <i>Science Bulletin</i> , 2020 , 65, 974-976	10.6	2
237	Recent Advances in Conjugated Polymers for Visible-Light-Driven Water Splitting. <i>Advanced Materials</i> , 2020 , 32, e1907296	24	141
236	Tubular assemblies of N-doped carbon nanotubes loaded with NiFe alloy nanoparticles as efficient bifunctional catalysts for rechargeable zinc-air batteries. <i>Nanoscale</i> , 2020 , 12, 13129-13136	7.7	36
235	Efficient wettability-controlled electroreduction of CO to CO at Au/C interfaces. <i>Nature Communications</i> , 2020 , 11, 3028	17.4	119
234	Evolution of Zn(II) single atom catalyst sites during the pyrolysis-induced transformation of ZIF-8 to N-doped carbons. <i>Science Bulletin</i> , 2020 , 65, 1743-1751	10.6	47
233	Revealing active sites in N-doped carbon for CO2 electroreduction by well-defined molecular model catalysts. <i>Science Bulletin</i> , 2020 , 65, 781-782	10.6	2
232	Recent advances in niobium-based semiconductors for solar hydrogen production. <i>Coordination Chemistry Reviews</i> , 2020 , 419, 213399	23.2	24
231	Photocatalytic alkane production from fatty acid decarboxylation over hydrogenated catalyst. <i>Science Bulletin</i> , 2020 , 65, 870-871	10.6	1
230	Dynamic changes of single-atom Pt-C3N4 photocatalysts. <i>Science Bulletin</i> , 2020 , 65, 1055-1056	10.6	7
229	How to make use of methanol in green catalytic hydrogen production?. Nano Select, 2020, 1, 12-29	3.1	23
228	Site- and Spatial-Selective Integration of Non-noble Metal Ions into Quantum Dots for Robust Hydrogen Photogeneration. <i>Matter</i> , 2020 , 3, 571-585	12.7	20
227	CoAl-layered double hydroxide nanosheet-based fluorescence assay for fast DNA detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020 , 240, 118618	4.4	5
226	Cooperation of oxygen vacancies and 2D ultrathin structure promoting CO2 photoreduction performance of Bi4Ti3O12. <i>Science Bulletin</i> , 2020 , 65, 934-943	10.6	74
225	Single-atom Ni integrated gas diffusion electrode for high performance carbon dioxide electroreduction. <i>Science Bulletin</i> , 2020 , 65, 696-697	10.6	2
224	FeOtteO2 nanocomposites: an efficient and highly selective catalyst system for photothermal CO2 reduction to CO. <i>NPG Asia Materials</i> , 2020 , 12,	10.3	48
223	Facet-charge-induced coupling dependent interfacial photocharge separation: A case of BiOI/g-C3N4 p-n junction. <i>Applied Catalysis B: Environmental</i> , 2020 , 267, 118697	21.8	104
222	Efficient Photocatalytic Nitrogen Fixation over Cu⊞-Modified Defective ZnAl-Layered Double Hydroxide Nanosheets. <i>Advanced Energy Materials</i> , 2020 , 10, 1901973	21.8	82

221	Macroscopic Spontaneous Polarization and Surface Oxygen Vacancies Collaboratively Boosting CO Photoreduction on BiOIO Single Crystals. <i>Advanced Materials</i> , 2020 , 32, e1908350	24	212
220	Designed controllable nitrogen-doped carbon-dots-loaded MoP nanoparticles for boosting hydrogen evolution reaction in alkaline medium. <i>Nano Energy</i> , 2020 , 72, 104730	17.1	105
219	High-Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Nickel Single-Atom Catalysts with Tetradentate N2O2 Coordination in a Three-Phase Flow Cell. <i>Angewandte Chemie</i> , 2020 , 132, 1315	72:1316	528
218	High-Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Nickel Single-Atom Catalysts with Tetradentate N O Coordination in a Three-Phase Flow Cell. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 13057-13062	16.4	98
217	Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. <i>Science Bulletin</i> , 2020 , 65, 987-994	10.6	86
216	Energy-Efficient Hydrogen Production via Electrochemical Methanol Oxidation Using a Bifunctional Nickel Nanoparticle-Embedded Carbon Prism-Like Microrod Electrode. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2020 , 2007079-0	3.8	2
215	Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance. <i>Applied Catalysis B: Environmental</i> , 2020 , 275, 119144	21.8	116
214	Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction. <i>Nano Energy</i> , 2020 , 70, 104445	17.1	61
213	Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. <i>Materials Today</i> , 2020 , 34, 78-91	21.8	116
212	Manganese Oxide Modified Nickel Catalysts for Photothermal CO Hydrogenation to Light Olefins. <i>Advanced Energy Materials</i> , 2020 , 10, 1902860	21.8	28
211	Wettability controlled photocatalytic reactive oxygen generation and Klebsiella pneumoniae inactivation over triphase systems. <i>Applied Catalysis B: Environmental</i> , 2020 , 264, 118518	21.8	35
210	A General Route to Prepare Low-Ruthenium-Content Bimetallic Electrocatalysts for pH-Universal Hydrogen Evolution Reaction by Using Carbon Quantum Dots. <i>Angewandte Chemie</i> , 2020 , 132, 1735-174	13.6	26
209	A General Route to Prepare Low-Ruthenium-Content Bimetallic Electrocatalysts for pH-Universal Hydrogen Evolution Reaction by Using Carbon Quantum Dots. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1718-1726	16.4	250
208	Effect of Support on Catalytic Performance of Photothermal Fischer-Tropsch Synthesis to Produce Lower Olefins over Fe5C2-based Catalysts. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 1006-101	2.2 Ž	8
207	Underwater superaerophobic Ni nanoparticle-decorated nickelholybdenum nitride nanowire arrays for hydrogen evolution in neutral media. <i>Nano Energy</i> , 2020 , 78, 105375	17.1	58
206	Alkali Etching of Layered Double Hydroxide Nanosheets for Enhanced Photocatalytic N2 Reduction to NH3. <i>Advanced Energy Materials</i> , 2020 , 10, 2002199	21.8	78
205	Electrochemical urea production directly from N2 and CO2 in ambient aqueous media. <i>Science China Chemistry</i> , 2020 , 63, 1580-1581	7.9	3
204	Photocatalytic CO2 Reduction to CO over Ni Single Atoms Supported on Defect-Rich Zirconia. <i>Advanced Energy Materials</i> , 2020 , 10, 2002928	21.8	92

(2019-2020)

203	Piezocatalysis and Piezo-Photocatalysis: Catalysts Classification and Modification Strategy, Reaction Mechanism, and Practical Application. <i>Advanced Functional Materials</i> , 2020 , 30, 2005158	15.6	133
202	Perylene diimide self-assembly: From electronic structural modulation to photocatalytic applications. <i>Journal of Semiconductors</i> , 2020 , 41, 091708	2.3	9
201	The Journey toward Low Temperature, Low Pressure Catalytic Nitrogen Fixation. <i>Advanced Energy Materials</i> , 2020 , 10, 2000659	21.8	56
200	Defect Engineering in Photocatalytic Nitrogen Fixation. <i>ACS Catalysis</i> , 2019 , 9, 9739-9750	13.1	163
199	Editorial for rare metals, special issue on photocatalysis. <i>Rare Metals</i> , 2019 , 38, 359-360	5.5	5
198	A Nanozyme with Photo-Enhanced Dual Enzyme-Like Activities for Deep Pancreatic Cancer Therapy. <i>Angewandte Chemie</i> , 2019 , 131, 12754-12761	3.6	38
197	A Nanozyme with Photo-Enhanced Dual Enzyme-Like Activities for Deep Pancreatic Cancer Therapy. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12624-12631	16.4	209
196	A Simple Synthetic Strategy toward Defect-Rich Porous Monolayer NiFe-Layered Double Hydroxide Nanosheets for Efficient Electrocatalytic Water Oxidation. <i>Advanced Energy Materials</i> , 2019 , 9, 1900881	21.8	220
195	A Photochemical Route towards Metal Sulfide Nanosheets from Layered Metal Thiolate Complexes. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8443-8447	16.4	24
194	A Photochemical Route towards Metal Sulfide Nanosheets from Layered Metal Thiolate Complexes. <i>Angewandte Chemie</i> , 2019 , 131, 8531	3.6	
193	Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. <i>Nano Research</i> , 2019 , 12, 2385-2389	10	115
192	Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting. <i>Nano Energy</i> , 2019 , 59, 644-650	17.1	347
191	Von Sonnenlicht zu Brennstoffen: aktuelle Fortschritte der C1-Solarchemie. <i>Angewandte Chemie</i> , 2019 , 131, 17690-17715	3.6	20
190	From Solar Energy to Fuels: Recent Advances in Light-Driven C Chemistry. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 17528-17551	16.4	181
189	Tuning Oxygen Vacancies in Ultrathin TiO Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm. <i>Advanced Materials</i> , 2019 , 31, e1806482	24	452
188	Intrinsic Carbon-Defect-Driven Electrocatalytic Reduction of Carbon Dioxide. <i>Advanced Materials</i> , 2019 , 31, e1808276	24	155
187	Photothermal hydrocarbon synthesis using alumina-supported cobalt metal nanoparticle catalysts derived from layered-double-hydroxide nanosheets. <i>Nano Energy</i> , 2019 , 60, 467-475	17.1	43
186	Pd Single-Atom Catalysts on Nitrogen-Doped Graphene for the Highly Selective Photothermal Hydrogenation of Acetylene to Ethylene. <i>Advanced Materials</i> , 2019 , 31, e1900509	24	164

185	Photocatalytic ammonia synthesis: Recent progress and future. <i>EnergyChem</i> , 2019 , 1, 100013	36.9	109
184	A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. <i>Nature Communications</i> , 2019 , 10, 4585	17.4	219
183	Self-crosslinking carbon dots loaded ruthenium dots as an efficient and super-stable hydrogen production electrocatalyst at all pH values. <i>Nano Energy</i> , 2019 , 65, 104023	17.1	80
182	Hollow PtFe Alloy Nanoparticles Derived from Pt-Fe O Dimers through a Silica-Protection Reduction Strategy as Efficient Oxygen Reduction Electrocatalysts. <i>Chemistry - A European Journal</i> , 2019 , 26, 4090	4.8	14
181	Two-dimensional Sn2Ta2O7 nanosheets as efficient visible light-driven photocatalysts for hydrogen evolution. <i>Rare Metals</i> , 2019 , 38, 397-403	5.5	33
180	Ammonia Detection Methods in Photocatalytic and Electrocatalytic Experiments: How to Improve the Reliability of NH Production Rates?. <i>Advanced Science</i> , 2019 , 6, 1802109	13.6	220
179	Two-dimensional-related catalytic materials for solar-driven conversion of CO into valuable chemical feedstocks. <i>Chemical Society Reviews</i> , 2019 , 48, 1972-2010	58.5	233
178	Ultrafine monolayer Co-containing layered double hydroxide nanosheets for water oxidation. <i>Journal of Energy Chemistry</i> , 2019 , 34, 57-63	12	56
177	Sub-3 nm Ultrafine Monolayer Layered Double Hydroxide Nanosheets for Electrochemical Water Oxidation. <i>Advanced Energy Materials</i> , 2018 , 8, 1703585	21.8	190
176	Self-assembling and photophysical properties of the organogelators based on cyanostyryl-substituted carbazoles. <i>Comptes Rendus Chimie</i> , 2018 , 21, 88-96	2.7	2
176 175		2.7	48
	cyanostyryl-substituted carbazoles. <i>Comptes Rendus Chimie</i> , 2018 , 21, 88-96 Silica-Protected Ultrathin Ni3FeN Nanocatalyst for the Efficient Hydrolytic Dehydrogenation of		
175	cyanostyryl-substituted carbazoles. <i>Comptes Rendus Chimie</i> , 2018 , 21, 88-96 Silica-Protected Ultrathin Ni3FeN Nanocatalyst for the Efficient Hydrolytic Dehydrogenation of NH3BH3. <i>Advanced Energy Materials</i> , 2018 , 8, 1702780 Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven	21.8	48
175 174	cyanostyryl-substituted carbazoles. <i>Comptes Rendus Chimie</i> , 2018 , 21, 88-96 Silica-Protected Ultrathin Ni3FeN Nanocatalyst for the Efficient Hydrolytic Dehydrogenation of NH3BH3. <i>Advanced Energy Materials</i> , 2018 , 8, 1702780 Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. <i>Nano Research</i> , 2018 , 11, 3462-3468 Photothermal CO2 Hydrogenation: Alumina-Supported CoFe Alloy Catalysts Derived from Layered-Double-Hydroxide Nanosheets for Efficient Photothermal CO2 Hydrogenation to	21.8 10 24	48 149
175 174 173	Cyanostyryl-substituted carbazoles. Comptes Rendus Chimie, 2018, 21, 88-96 Silica-Protected Ultrathin Ni3FeN Nanocatalyst for the Efficient Hydrolytic Dehydrogenation of NH3BH3. Advanced Energy Materials, 2018, 8, 1702780 Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. Nano Research, 2018, 11, 3462-3468 Photothermal CO2 Hydrogenation: Alumina-Supported CoFe Alloy Catalysts Derived from Layered-Double-Hydroxide Nanosheets for Efficient Photothermal CO2 Hydrogenation to Hydrocarbons (Adv. Mater. 3/2018). Advanced Materials, 2018, 30, 1870015 Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: Triple-functional role for efficient visible-light photocatalytic redox performance. Applied Catalysis B: Environmental, 2018,	21.8 10 24	48 149 2
175 174 173	Cyanostyryl-substituted carbazoles. Comptes Rendus Chimie, 2018, 21, 88-96 Silica-Protected Ultrathin Ni3FeN Nanocatalyst for the Efficient Hydrolytic Dehydrogenation of NH3BH3. Advanced Energy Materials, 2018, 8, 1702780 Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. Nano Research, 2018, 11, 3462-3468 Photothermal CO2 Hydrogenation: Alumina-Supported CoFe Alloy Catalysts Derived from Layered-Double-Hydroxide Nanosheets for Efficient Photothermal CO2 Hydrogenation to Hydrocarbons (Adv. Mater. 3/2018). Advanced Materials, 2018, 30, 1870015 Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: Triple-functional role for efficient visible-light photocatalytic redox performance. Applied Catalysis B: Environmental, 2018, 226, 441-450 3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics. Applied Catalysis B: Environmental, 2018,	21.8 10 24 21.8	48 149 2 108
175 174 173 172 171	Silica-Protected Ultrathin Ni3FeN Nanocatalyst for the Efficient Hydrolytic Dehydrogenation of NH3BH3. Advanced Energy Materials, 2018, 8, 1702780 Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. Nano Research, 2018, 11, 3462-3468 Photothermal CO2 Hydrogenation: Alumina-Supported CoFe Alloy Catalysts Derived from Layered-Double-Hydroxide Nanosheets for Efficient Photothermal CO2 Hydrogenation to Hydrocarbons (Adv. Mater. 3/2018). Advanced Materials, 2018, 30, 1870015 Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: Triple-functional role for efficient visible-light photocatalytic redox performance. Applied Catalysis B: Environmental, 2018, 226, 441-450 3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics. Applied Catalysis B: Environmental, 2018, 232, 562-573 Two-step hydrothermal synthesis of Sn2Nb2O7 nanocrystals with enhanced visible-light-driven H2	21.8 10 24 21.8	48 149 2 108 189

(2017-2018)

167	Photothermal Catalysis: Co-Based Catalysts Derived from Layered-Double-Hydroxide Nanosheets for the Photothermal Production of Light Olefins (Adv. Mater. 31/2018). <i>Advanced Materials</i> , 2018 , 30, 1870230	24	4
166	Anchored Cu(II) tetra(4-carboxylphenyl)porphyrin to P25 (TiO2) for efficient photocatalytic ability in CO2 reduction. <i>Applied Catalysis B: Environmental</i> , 2018 , 239, 599-608	21.8	92
165	Black phosphorus quantum dot/g-C3N4 composites for enhanced CO2 photoreduction to CO. <i>Science China Materials</i> , 2018 , 61, 1159-1166	7.1	84
164	Co-Based Catalysts Derived from Layered-Double-Hydroxide Nanosheets for the Photothermal Production of Light Olefins. <i>Advanced Materials</i> , 2018 , 30, e1800527	24	92
163	Nanocrystals@Hollow Mesoporous Silica Reverse-Bumpy-Ball Structure Nanoreactors by a Versatile Microemulsion-Templated Approach. <i>Small Methods</i> , 2018 , 2, 1800105	12.8	17
162	Evolution of thiolate-stabilized Ag nanoclusters from Ag-thiolate cluster intermediates. <i>Nature Communications</i> , 2018 , 9, 2379	17.4	39
161	Alumina-Supported CoFe Alloy Catalysts Derived from Layered-Double-Hydroxide Nanosheets for Efficient Photothermal CO Hydrogenation to Hydrocarbons. <i>Advanced Materials</i> , 2018 , 30, 1704663	24	208
160	An ion-exchange strategy for I-doped BiOCOOH nanoplates with enhanced visible light photocatalytic NOx removal. <i>Pure and Applied Chemistry</i> , 2018 , 90, 353-361	2.1	7
159	Thickness-Dependent Facet Junction Control of Layered BiOIO3 Single Crystals for Highly Efficient CO2 Photoreduction. <i>Advanced Functional Materials</i> , 2018 , 28, 1804284	15.6	275
158	Local spatial charge separation and proton activation induced by surface hydroxylation promoting photocatalytic hydrogen evolution of polymeric carbon nitride. <i>Nano Energy</i> , 2018 , 50, 383-392	17.1	158
157	Naked Magnetically Recyclable Mesoporous Au Fe2O3 Nanocrystal Clusters: A Highly Integrated Catalyst System. <i>Advanced Functional Materials</i> , 2017 , 27, 1606215	15.6	71
156	Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution. <i>Advanced Materials</i> , 2017 , 29, 1605148	24	951
155	Catalysts: Naked Magnetically Recyclable Mesoporous Au Fe 203 Nanocrystal Clusters: A Highly Integrated Catalyst System (Adv. Funct. Mater. 9/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	1
154	Nickel-Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An All-pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution. <i>Advanced Materials</i> , 2017 , 29, 16065	21	301
153	Readily attainable spongy foam photocatalyst for promising practical photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2017 , 208, 75-81	21.8	28
152	Photocatalysis: Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution (Adv. Mater. 16/2017). <i>Advanced Materials</i> , 2017 , 29,	24	7
151	Self-Assembled Au/CdSe Nanocrystal Clusters for Plasmon-Mediated Photocatalytic Hydrogen Evolution. <i>Advanced Materials</i> , 2017 , 29, 1700803	24	258
150	Defect-Engineered Ultrathin EMnO2 Nanosheet Arrays as Bifunctional Electrodes for Efficient Overall Water Splitting. <i>Advanced Energy Materials</i> , 2017 , 7, 1700005	21.8	373

149	Electrocatalysts: Nickel©obalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An All-pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution (Adv. Mater. 19/2017). Advanced Materials, 2017 , 29,	24	43
148	Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. <i>Nano Energy</i> , 2017 , 38, 72-81	17.1	441
147	Graphene with Atomic-Level In-Plane Decoration of h-BN Domains for Efficient Photocatalysis. <i>Chemistry of Materials</i> , 2017 , 29, 2769-2776	9.6	50
146	Layered-Double-Hydroxide Nanosheets as Efficient Visible-Light-Driven Photocatalysts for Dinitrogen Fixation. <i>Advanced Materials</i> , 2017 , 29, 1703828	24	342
145	Intermediate-mediated strategy to horn-like hollow mesoporous ultrathin g-C3N4 tube with spatial anisotropic charge separation for superior photocatalytic H2 evolution. <i>Nano Energy</i> , 2017 , 41, 738-748	17.1	179
144	3D carbon nanoframe scaffold-immobilized Ni3FeN nanoparticle electrocatalysts for rechargeable zinc-air batteries Lathodes. <i>Nano Energy</i> , 2017 , 40, 382-389	17.1	116
143	Achieving UV and visible-light photocatalytic activity enhancement of AgI/BiOIO3 heterostructure: Decomposition for diverse industrial contaminants and high mineralization ability. <i>Chinese Chemical Letters</i> , 2017 , 28, 2244-2250	8.1	37
142	Water Splitting: Defect-Engineered Ultrathin EMnO2 Nanosheet Arrays as Bifunctional Electrodes for Efficient Overall Water Splitting (Adv. Energy Mater. 18/2017). <i>Advanced Energy Materials</i> , 2017 , 7,	21.8	3
141	Recent Progress in Photocatalytic CO2 Reduction Over Perovskite Oxides. <i>Solar Rrl</i> , 2017 , 1, 1700126	7.1	163
140	NiFe Layered Double Hydroxide Nanoparticles on Co,N-Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable ZincAir Batteries. <i>Advanced Energy Materials</i> , 2017 , 7, 1700467	21.8	280
139	Macroscopic Polarization Enhancement Promoting Photo- and Piezoelectric-Induced Charge Separation and Molecular Oxygen Activation. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 1186	6 6 -9 .4 86	5662
138	Macroscopic Polarization Enhancement Promoting Photo- and Piezoelectric-Induced Charge Separation and Molecular Oxygen Activation. <i>Angewandte Chemie</i> , 2017 , 129, 12022-12026	3.6	55
137	Effect of Nitrogen Doping Level on the Performance of N-Doped Carbon Quantum Dot/TiO Composites for Photocatalytic Hydrogen Evolution. <i>ChemSusChem</i> , 2017 , 10, 4650-4656	8.3	127
136	Fabrication of Heterogeneous-Phase Solid-Solution Promoting Band Structure and Charge Separation for Enhancing Photocatalytic CO Reduction: A Case of ZnCaInS. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 27773-27783	9.5	54
135	Template-free precursor-surface-etching route to porous, thin g-C3N4 nanosheets for enhancing photocatalytic reduction and oxidation activity. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 17452-17463	13	260
134	Single-unit-cell layer established Bi2WO6 3D hierarchical architectures: Efficient adsorption, photocatalysis and dye-sensitized photoelectrochemical performance. <i>Applied Catalysis B: Environmental</i> , 2017 , 219, 526-537	21.8	217
133	Controllable synthesis of multi-responsive ferroelectric layered perovskite-like Bi4Ti3O12: Photocatalysis and piezoelectric-catalysis and mechanism insight. <i>Applied Catalysis B: Environmental</i> , 2017 , 219, 550-562	21.8	129
132	Photocatalysts: Layered-Double-Hydroxide Nanosheets as Efficient Visible-Light-Driven Photocatalysts for Dinitrogen Fixation (Adv. Mater. 42/2017). <i>Advanced Materials</i> , 2017 , 29,	24	1

(2016-2017)

131	Zinc-Air Batteries: NiFe Layered Double Hydroxide Nanoparticles on Co,N-Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable ZincAir Batteries (Adv. Energy Materials, 2017 , 7,	21.8	4
130	Rational design on 3D hierarchical bismuth oxyiodides via in situ self-template phase transformation and phase-junction construction for optimizing photocatalysis against diverse contaminants. <i>Applied Catalysis B: Environmental</i> , 2017 , 203, 879-888	21.8	230
129	A Sustainable Strategy for the Synthesis of Pyrochlore H Nb O Hollow Microspheres as Photocatalysts for Overall Water Splitting. <i>ChemPlusChem</i> , 2017 , 82, 181-185	2.8	28
128	Multishelled Ni-Rich Li(Ni Co Mn)O Hollow Fibers with Low Cation Mixing as High-Performance Cathode Materials for Li-Ion Batteries. <i>Advanced Science</i> , 2017 , 4, 1600262	13.6	145
127	Chlorine intercalation in graphitic carbon nitride for efficient photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2017 , 203, 465-474	21.8	241
126	Dual redox couples Ag/Ag+ and II(IO3)Belf-sacrificed transformation for realizing multiplex hierarchical architectures with universally powerful photocatalytic performance. <i>Applied Catalysis B: Environmental</i> , 2017 , 200, 620-632	21.8	37
125	Iodide surface decoration: a facile and efficacious approach to modulating the band energy level of semiconductors for high-performance visible-light photocatalysis. <i>Chemical Communications</i> , 2016 , 52, 354-7	5.8	49
124	Smart Utilization of Carbon Dots in Semiconductor Photocatalysis. <i>Advanced Materials</i> , 2016 , 28, 9454-9	947,7	483
123	Metal-Organic-Framework-Derived Mesoporous Carbon Nanospheres Containing Porphyrin-Like Metal Centers for Conformal Phototherapy. <i>Advanced Materials</i> , 2016 , 28, 8379-8387	24	207
122	Carbon Nanosheets: Nitrogen-Doped Porous Carbon Nanosheets Templated from g-C3 N4 as Metal-Free Electrocatalysts for Efficient Oxygen Reduction Reaction (Adv. Mater. 25/2016). <i>Advanced Materials</i> , 2016 , 28, 5140	24	36
121	Thiolate-Mediated Photoinduced Synthesis of Ultrafine Ag S Quantum Dots from Silver Nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14952-14957	16.4	33
120	Thiolate-Mediated Photoinduced Synthesis of Ultrafine Ag2S Quantum Dots from Silver Nanoparticles. <i>Angewandte Chemie</i> , 2016 , 128, 15176-15181	3.6	5
119	Nitrogen-Doped Porous Carbon Nanosheets Templated from g-C3 N4 as Metal-Free Electrocatalysts for Efficient Oxygen Reduction Reaction. <i>Advanced Materials</i> , 2016 , 28, 5080-6	24	573
118	Ni3FeN Nanoparticles Derived from Ultrathin NiFe-Layered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst. <i>Advanced Energy Materials</i> , 2016 , 6, 1502585	21.8	522
117	Oxide-Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light. <i>Angewandte Chemie</i> , 2016 , 128, 4287-4291	3.6	28
116	Facile synthesis of ultrathin SnNb2O6 nanosheets towards improved visible-light photocatalytic H2-production activity. <i>Chemical Communications</i> , 2016 , 52, 8239-42	5.8	68
115	In situ assembly of BiOI@Bi 12 O 17 Cl 2 p - n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2016 , 199, 75-86	21.8	494
114	Water Splitting: Ni3FeN Nanoparticles Derived from Ultrathin NiFe-Layered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst (Adv. Energy Mater. 10/2016). <i>Advanced Energy Materials</i> , 2016 , 6,	21.8	2

pH-Responsive reversible self-assembly of gold nanoparticles into nanovesicles. Nanoscale, 2016, 8, 3923-5 113 37 Recent Advances in the Synthesis, Characterization and Application of Zn-containing 13.6 112 Heterogeneous Catalysts. Advanced Science, 2016, 3, 1500424 Graphene modified mesoporous titania single crystals with controlled and selective photoredox 111 5.8 40 surfaces. Chemical Communications, 2016, 52, 1689-92 Layered Double Hydroxide Nanostructured Photocatalysts for Renewable Energy Production. 110 21.8 289 Advanced Energy Materials, 2016, 6, 1501974 Controllable Synthesis of Ultrathin Transition-Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction. Angewandte 109 16.4 83 Chemie - International Edition, 2016, 55, 2167-70 Oxide-Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light. 108 16.4 157 Angewandte Chemie - International Edition, 2016, 55, 4215-9 Well-Dispersed ZIF-Derived Co,N-Co-doped Carbon Nanoframes through Mesoporous-Silica-Protected Calcination as Efficient Oxygen Reduction Electrocatalysts. Advanced 107 558 24 Materials, 2016, 28, 1668-74 CdS Nanoparticle-Decorated Cd Nanosheets for Efficient Visible Light-Driven Photocatalytic 106 21.8 193 Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1501241 Controllable Synthesis of Ultrathin Transition-Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction. Angewandte 3.6 105 10 Chemie, 2016, 128, 2207-2210 Röktitelbild: Controllable Synthesis of Ultrathin Transition-Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction (Angew. 104 3.6 Chem. 6/2016). Angewandte Chemie, **2016**, 128, 2316-2316 Facile In Situ Self-Sacrifice Approach to Ternary Hierarchical Architecture Ag/AgX (X = Cl, Br, I)/AgIO3 Distinctively Promoting Visible-Light Photocatalysis with Composition-Dependent 103 8.3 59 Mechanism. ACS Sustainable Chemistry and Engineering, 2016, 4, 3305-3315 Hydrogen Evolution: CdS Nanoparticle-Decorated Cd Nanosheets for Efficient Visible Light-Driven Photocatalytic Hydrogen Evolution (Adv. Energy Mater. 3/2016). Advanced Energy Materials, 2016, 102 21.8 6, Carbon Nanoframes: Well-Dispersed ZIF-Derived Co,N-Co-doped Carbon Nanoframes through Mesoporous-Silica-Protected Calcination as Efficient Oxygen Reduction Electrocatalysts (Adv. 8 101 24 Mater. 8/2016). Advanced Materials, 2016, 28, 1712-1712 Achieving tunable photocatalytic activity enhancement by elaborately engineering composition-adjustable polynary heterojunctions photocatalysts. Applied Catalysis B: Environmental 100 21.8 61 , **2016**, 194, 62-73 Ultrafine NiO Nanosheets Stabilized by TiO2 from Monolayer NiTi-LDH Precursors: An Active Water 16.4 452 99 Oxidation Electrocatalyst. Journal of the American Chemical Society, 2016, 138, 6517-24 Phototherapy: Metal Drganic-Framework-Derived Mesoporous Carbon Nanospheres Containing 98 Porphyrin-Like Metal Centers for Conformal Phototherapy (Adv. Mater. 38/2016). Advanced 24 Materials, 2016, 28, 8318-8318 Ni3+ doped monolayer layered double hydroxide nanosheets as efficient electrodes for 98 97 7.7 supercapacitors. Nanoscale, 2015, 7, 7168-73 In Situ Co-Crystallization for Fabrication of g-C3N4/Bi5O7I Heterojunction for Enhanced 96 3.8 138 Visible-Light Photocatalysis. Journal of Physical Chemistry C, 2015, 119, 17156-17165

(2015-2015)

95	promoting photo-induced oxidation and reduction properties. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 17120-17129	13	256
94	Copper(I) cysteine complexes: efficient earth-abundant oxidation co-catalysts for visible light-driven photocatalytic H2 production. <i>Chemical Communications</i> , 2015 , 51, 12556-9	5.8	34
93	Layered MoS2 nanoparticles on TiO2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions. <i>Green Chemistry</i> , 2015 , 17, 2764-27	'6 ¹ 80	58
92	Architecture-controlled synthesis of MxOy (M = Ni, Fe, Cu) microfibres from seaweed biomass for high-performance lithium ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22708-22715	13	62
91	Bi2O2(OH)(NO3) as a desirable [Bi2O2]2+ layered photocatalyst: strong intrinsic polarity, rational band structure and {001} active facets co-beneficial for robust photooxidation capability. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 24547-24556	13	310
90	Moderate band-gap-broadening induced high separation of electron-hole pairs in Br substituted BiOI: a combined experimental and theoretical investigation. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 3673-9	3.6	45
89	A versatile 'click chemistry' route to size-restricted, robust, and functionalizable hydrophilic nanocrystals. <i>Small</i> , 2015 , 11, 1644-8	11	11
88	Underwater superoleophobic porous membrane based on hierarchical TiO2 nanotubes: multifunctional integration of oilwater separation, flow-through photocatalysis and self-cleaning. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1279-1286	13	181
87	Controllable sonochemical synthesis of Cu2O/Cu2(OH)3NO3 composites toward synergy of adsorption and photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2015 , 164, 234-240	21.8	40
86	Photoreduction: Defect-Rich Ultrathin ZnAl-Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2 to CO with Water (Adv. Mater. 47/2015). <i>Advanced Materials</i> , 2015 , 27, 7823-78	32 3 4	25
85	Effects of surfactants on visible-light-driven photocatalytic hydrogen evolution activities of AgInZn7S9 nanorods. <i>Applied Surface Science</i> , 2015 , 358, 485-490	6.7	18
84	Defect-Rich Ultrathin ZnAl-Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2 to CO with Water. <i>Advanced Materials</i> , 2015 , 27, 7824-31	24	445
83	In situ crystallization for fabrication of a core-satellite structured BiOBr-CdS heterostructure with excellent visible-light-responsive photoreactivity. <i>Nanoscale</i> , 2015 , 7, 11702-11	7.7	115
82	Anionic Group Self-Doping as a Promising Strategy: Band-Gap Engineering and Multi-Functional Applications of High-Performance CO32EDoped Bi2O2CO3. <i>ACS Catalysis</i> , 2015 , 5, 4094-4103	13.1	596
81	Synchronously Achieving Plasmonic Bi Metal Deposition and I(-) Doping by Utilizing BiOIO3 as the Self-Sacrificing Template for High-Performance Multifunctional Applications. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 27925-33	9.5	99
80	Ultraviolet photodetectors with high photosensitivity based on type-II ZnS/SnO2 core/shell heterostructured ribbons. <i>Nanoscale</i> , 2015 , 7, 5311-9	7.7	32
79	Highly luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for mercuric and iodide ions. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 1922-1928	7.1	144
78	Highly Efficient Bi2O2CO3 Single-Crystal Lamellas with Dominantly Exposed {001} Facets. <i>Crystal Growth and Design</i> , 2015 , 15, 534-537	3.5	88

77	Novel Y doped Bi2WO6 photocatalyst: Hydrothermal fabrication, characterization and enhanced visible-light-driven photocatalytic activity for Rhodamine B degradation and photocurrent generation. <i>Materials Characterization</i> , 2015 , 101, 166-172	3.9	48
76	Flower-like CdSe ultrathin nanosheet assemblies for enhanced visible-light-driven photocatalytic H2 production. <i>Chemical Communications</i> , 2015 , 51, 4677-80	5.8	46
75	Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic-inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity. <i>Dalton Transactions</i> , 2015 , 44, 4297-307	4.3	275
74	Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3344	13	510
73	One-Pot Hydrothermal Synthesis and Photocatalytic Hydrogen Evolution of Pyrochlore Type K2Nb2O6. <i>Chinese Journal of Chemistry</i> , 2014 , 32, 485-490	4.9	21
72	C3-Symmetrical Cyano-Substituted Triphenylbenzenes for Organogels and Organic Nanoparticles with Controllable Fluorescence and Aggregation-Induced Emission. <i>European Journal of Organic Chemistry</i> , 2014 , 2014, 2907-2916	3.2	17
71	Spontaneous organization of inorganic nanoparticles into nanovesicles triggered by UV light. <i>Advanced Materials</i> , 2014 , 26, 5613-8	24	104
70	Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 250-4	16.4	341
69	Mesoporous plasmonic Au-loaded Ta2O5 nanocomposites for efficient visible light photocatalysis. <i>Catalysis Today</i> , 2014 , 225, 158-163	5.3	68
68	Cu2O Film via Hydrothermal Redox Approach: Morphology and Photocatalytic Performance. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16335-16343	3.8	79
67	Broadband visible-light-harvesting trans-bis(alkylphosphine) platinum(II)-alkynyl complexes with singlet energy transfer between BODIPY and naphthalene diimide ligands. <i>Chemistry - A European Journal</i> , 2014 , 20, 14282-95	4.8	26
66	Facile preparation of black Nb4+ self-doped K4Nb6O17 microspheres with high solar absorption and enhanced photocatalytic activity. <i>Chemical Communications</i> , 2014 , 50, 9554-6	5.8	81
65	Fabrication of versatile cyclodextrin-functionalized upconversion luminescence nanoplatform for biomedical imaging. <i>Analytical Chemistry</i> , 2014 , 86, 6508-15	7.8	42
64	A mild one-step solvothermal route to truncated octahedral magnetite crystals. <i>Particuology</i> , 2014 , 15, 51-55	2.8	6
63	Graphene-Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions. <i>Angewandte Chemie</i> , 2014 , 126, 254-258	3.6	118
62	Innentitelbild: Graphene-Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions (Angew. Chem. 1/2014). <i>Angewandte Chemie</i> , 2014 , 126, 2-2	3.6	6
61	Nanoparticles: Spontaneous Organization of Inorganic Nanoparticles into Nanovesicles Triggered by UV Light (Adv. Mater. 32/2014). <i>Advanced Materials</i> , 2014 , 26, 5731-5731	24	
60	Two-component gel of a DAD carbazole donor and a fullerene acceptor. <i>RSC Advances</i> , 2013 , 3, 26403	3.7	34

(2009-2013)

59	Facile synthesis of hierarchical ZnIn2S4 submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H2 production. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4552	13	149
58	Type-II ZnO nanorod-SnO2 nanoparticle heterostructures: characterization of structural, optical and photocatalytic properties. <i>Nanoscale</i> , 2013 , 5, 3828-33	7.7	46
57	Low-temperature crystallization of anodized TiO2 nanotubes at the solid-gas interface and their photoelectrochemical properties. <i>Nanoscale</i> , 2013 , 5, 6139-44	7.7	24
56	Amplifying emission enhancement and proton response in a two-component gel. <i>Langmuir</i> , 2013 , 29, 417-25	4	50
55	Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production. <i>Chemical Communications</i> , 2013 , 49, 9872-4	5.8	75
54	Heterogeneous 3-D nanotubular arrays of CdS-TiO2: efficient collections of reflection light for enhanced photoelectric output. <i>Journal of Materials Chemistry</i> , 2012 , 22, 22120		11
53	Magnetically recyclable nanocatalysts (MRNCs): a versatile integration of high catalytic activity and facile recovery. <i>Nanoscale</i> , 2012 , 4, 6244-55	7.7	133
52	Enhanced electrocatalytic activity of Pt-nanostructures prepared by electrodeposition using poly(vinyl pyrrolidone) as a shape-control agent. <i>Electrochimica Acta</i> , 2012 , 83, 383-386	6.7	10
51	Shape-controlled synthesis of polyhedral 50-facet Cu2O microcrystals with high-index facets. <i>CrystEngComm</i> , 2012 , 14, 4431	3.3	62
50	Hydrothermal synthesis and structure evolution of hierarchical cobalt sulfide nanostructures. <i>Dalton Transactions</i> , 2011 , 40, 243-8	4.3	124
49	Nanostructured porous ZnO film with enhanced photocatalytic activity. <i>Thin Solid Films</i> , 2011 , 519, 567	73 2 5 <u>6</u> 78	3 58
48	Control over the permeation of silica nanoshells by surface-protected etching with water. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 11836-42	3.6	108
47	Shape Effects of Cu2O Polyhedral Microcrystals on Photocatalytic Activity. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 5073-5079	3.8	330
46	Organized Nanostructured Complexes of Polyoxometalates and Surfactants that Exhibit Photoluminescence and Electrochromism. <i>Advanced Functional Materials</i> , 2009 , 19, 642-652	15.6	132
45	Fluorescence Signal Amplification by Cation Exchange in Ionic Nanocrystals. <i>Angewandte Chemie</i> , 2009 , 121, 1616-1619	3.6	7
44	Fluorescence signal amplification by cation exchange in ionic nanocrystals. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 1588-91	16.4	55
43	Silver decorated Emanganese dioxide nanorods for alkaline battery cathode. <i>Journal of Power Sources</i> , 2009 , 186, 532-538	8.9	16
42	Towards functional nanostructures: Ionic self-assembly of polyoxometalates and surfactants. <i>Current Opinion in Colloid and Interface Science</i> , 2009 , 14, 62-70	7.6	52

41	A Self-Templated Route to Hollow Silica Microspheres. Journal of Physical Chemistry C, 2009, 113, 3168-	-331875	201
40	Permeable silica shell through surface-protected etching. <i>Nano Letters</i> , 2008 , 8, 2867-71	11.5	526
39	TiO2 nanoparticles as a soft X-ray molecular probe. Chemical Communications, 2008, 2471-3	5.8	31
38	Self-assembly and field-responsive optical diffractions of superparamagnetic colloids. <i>Langmuir</i> , 2008 , 24, 3671-80	4	114
37	Formation of hollow silica colloids through a spontaneous dissolution-regrowth process. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 5806-11	16.4	283
36	Core-satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 8924-8	16.4	421
35	A Blown Film Process to Disk-Shaped Polymer Ellipsoids. <i>Advanced Materials</i> , 2008 , 20, 4599-4602	24	43
34	Formation of Hollow Silica Colloids through a Spontaneous Dissolution R egrowth Process. <i>Angewandte Chemie</i> , 2008 , 120, 5890-5895	3.6	69
33	CoreBatellite Nanocomposite Catalysts Protected by a Porous Silica Shell: Controllable Reactivity, High Stability, and Magnetic Recyclability. <i>Angewandte Chemie</i> , 2008 , 120, 9056-9060	3.6	143
32	Size-controlled synthesis of highly water-soluble silver nanocrystals. <i>Journal of Solid State Chemistry</i> , 2008 , 181, 1524-1529	3.3	40
31	Kinetically Probing Site-Specific Heterogeneous Nucleation and Hierarchical Growth of Nanobranches. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 13691-13695	3.8	20
30	Future approaches of nanomedicine in clinical science. <i>Medical Clinics of North America</i> , 2007 , 91, 963-1	0 1 6	17
29	A self-templated approach to TiO2 microcapsules. <i>Nano Letters</i> , 2007 , 7, 1832-6	11.5	130
28	A general approach for transferring hydrophobic nanocrystals into water. <i>Nano Letters</i> , 2007 , 7, 3203-7	11.5	325
27	Superparamagnetic composite colloids with anisotropic structures. <i>Journal of the American Chemical Society</i> , 2007 , 129, 8974-5	16.4	209
26	Multifunctional Nanowire Bioscaffolds on Titanium. <i>Chemistry of Materials</i> , 2007 , 19, 4454-4459	9.6	94
25	Design and hierarchical synthesis of branched heteromicrostructures. <i>Smart Materials and Structures</i> , 2006 , 15, N46-N50	3.4	10
24	Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites. <i>Journal of the American Chemical Society</i> , 2006 , 128, 10960-8	16.4	340

23	Multifunctional, catalytic nanowire membranes and the membrane-based 3D devices. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 16819-22	3.4	67
22	Biocompatible nanofiber scaffolds on metal for controlled release and cell colonization. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2006 , 2, 248-52	6	20
21	Highly photoluminescent polyoxometaloeuropate-surfactant complexes by ionic self-assembly. <i>Chemistry - A European Journal</i> , 2005 , 11, 1001-9	4.8	153
20	Synthesis of hyperbranched poly(aminellster)-protected noble metal nanoparticles in aqueous solution. <i>Journal of Materials Research</i> , 2003 , 18, 1392-1398	2.5	7
19	Ultrasound-induced change of microstructure and photochromic properties of polyacrylamide thin films containing a polyoxometalate. <i>Journal of Materials Research</i> , 2003 , 18, 709-713	2.5	8
18	Evaluation of photochromic properties in heteropolyoxometallate-based inorganic polymeric thin films. <i>Materials Chemistry and Physics</i> , 2003 , 77, 294-298	4.4	19
17	Preparation of Au nanoparticles in the presence of low generational poly(amidoamine) dendrimer with surface hydroxyl groups. <i>Materials Chemistry and Physics</i> , 2003 , 81, 160-165	4.4	44
16	Hyperbranched poly(amine-ester) templates for the synthesis of Au nanoparticles. <i>Materials Chemistry and Physics</i> , 2003 , 82, 812-817	4.4	25
15	Photochromic polyoxotungstoeuropate K12[EuP5W30O110]/polyvinylpyrrolidone nanocomposite films. <i>Journal of Solid State Chemistry</i> , 2003 , 172, 458-463	3.3	37
14	Highly ordered photoluminescent self-assembled films based on polyoxotungstoeuropate complex Na9[EuW10O36]. <i>Journal of Materials Chemistry</i> , 2003 , 13, 580-584		37
13	Thermochromic Organoaminomodified Silica Composite Films Containing Phosphomolybdic Acid. Journal of Solid State Chemistry, 2002 , 166, 259-263	3.3	21
12	Multilayer films of cationic surfactants incorporating polyoxometalate on electrodes. <i>Journal of Solid State Electrochemistry</i> , 2002 , 7, 25-29	2.6	11
11	Self-assembled organicIhorganic composite superlattice thin films incorporating photo- and electro-chemically active phosphomolybdate anion. <i>Journal of Materials Chemistry</i> , 2002 , 12, 1453-1458		33
10	Photothermal-Assisted Photocatalytic Nitrogen Oxidation to Nitric Acid on Palladium-Decorated Titanium Oxide. <i>Advanced Energy Materials</i> ,2103740	21.8	7
9	Noble-metal-free dye-sensitized selective oxidation of methane to methanol with green light (550 nm). <i>Nano Research</i> ,1	10	11
8	Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. <i>Nano Research</i> ,1	10	15
7	Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. <i>Nature Catalysis</i> ,	36.5	27
6	Enhancing the Supply of Activated Hydrogen to Promote Photocatalytic Nitrogen Fixation1521-1527		8

5	A Review on the Bioinspired Photocatalysts and Photocatalytic Systems. <i>Advanced Sustainable Systems</i> ,2100477	5.9	2	
4	Interfacial wettability and mass transfer characterizations for gasIlquidBolid triple-phase catalysis. <i>Exploration</i> ,20210046		2	
3	Electronically Activated Fe5C2 via N-Doped Carbon to Enhance Photothermal Syngas Conversion to Light Olefins. <i>ACS Catalysis</i> ,5316-5326	13.1	2	
2	Progress and Prospect of Photothermal Catalysis. Chemical Research in Chinese Universities,1	2.2	3	
1	NiFe Nanoalloys Derived from Layered Double Hydroxides for Photothermal Synergistic Reforming of CH 4 with CO 2. <i>Advanced Functional Materials</i> ,2204056	15.6	3	