
Ranu Gadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6199250/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In situ measurement of dissolved phosphorus in natural waters using DGT. Analytica Chimica Acta, 1998, 370, 29-38.	5.4	309
2	Clay based nanocomposites for removal of heavy metals from water: A review. Journal of Environmental Management, 2019, 232, 803-817.	7.8	234
3	Variations in particulate matter over Indo-Gangetic Plains and Indo-Himalayan Range during four field campaigns in winter monsoon and summer monsoon: Role of pollution pathways. Atmospheric Environment, 2017, 154, 200-224.	4.1	119
4	Emissions estimates of PAH from biomass fuels used in rural sector of Indo-Gangetic Plains of India. Atmospheric Environment, 2013, 68, 120-126.	4.1	101
5	Characterization of particulate-bound polycyclic aromatic hydrocarbons and trace metals composition of urban air in Delhi, India. Atmospheric Environment, 2011, 45, 7653-7663.	4.1	99
6	Source apportionment and health risk assessment of organic constituents in fine ambient aerosols (PM2.5): A complete year study over National Capital Region of India. Chemosphere, 2019, 221, 583-596.	8.2	95
7	Carbonaceous aerosol emissions from India. Atmospheric Environment, 2005, 39, 7861-7871.	4.1	89
8	Stable carbon and nitrogen isotopic composition of bulk aerosols over India and northern Indian Ocean. Atmospheric Environment, 2011, 45, 2828-2835.	4.1	87
9	Emission estimates of organic and elemental carbon from household biomass fuel used over the Indo-Gangetic Plain (IGP), India. Atmospheric Environment, 2012, 61, 212-220.	4.1	77
10	Study of temporal variation in ambient air quality during Diwali festival in India. Environmental Monitoring and Assessment, 2010, 169, 1-13.	2.7	66
11	Investigation of phytochemical components and corrosion inhibition property of Ficus racemosa stem extract on mild steel in H2SO4 medium. Journal of Environmental Chemical Engineering, 2016, 4, 4699-4707.	6.7	60
12	Emission estimates of particulate matter (PM) and trace gases (SO2, NO and NO2) from biomass fuels used in rural sector of Indo-Gangetic Plain, India. Atmospheric Environment, 2011, 45, 5913-5923.	4.1	56
13	Characterization and source apportionment of organic compounds in PM10 using PCA and PMF at a traffic hotspot of Delhi. Sustainable Cities and Society, 2018, 39, 52-67.	10.4	52
14	Seasonal variation, source apportionment and source attributed health risk of fine carbonaceous aerosols over National Capital Region, India. Chemosphere, 2019, 237, 124500.	8.2	51
15	Spatial variation of chemical constituents from the burning of commonly used biomass fuels in rural areas of the Indo-Gangetic Plain (IGP), India. Atmospheric Environment, 2013, 71, 158-169.	4.1	49
16	Emissions of SO2 and NOx from biofuels in India. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 787-795.	1.6	45
17	Avoiding high ozone pollution in Delhi, India. Faraday Discussions, 2021, 226, 502-514.	3.2	42
18	Levels, Sources, and Toxic Potential of Polycyclic Aromatic Hydrocarbons in Urban Soil of Delhi, India. Human and Ecological Risk Assessment (HERA), 2012, 18, 393-411.	3.4	41

Ranu Gadi

#	Article	IF	CITATIONS
19	Chemical properties of emission from biomass fuels used in the rural sector of the western region of India. Atmospheric Environment, 2014, 99, 411-424.	4.1	38
20	Emissions of intermediate-volatility and semi-volatile organic compounds from domestic fuels used in Delhi, India. Atmospheric Chemistry and Physics, 2021, 21, 2407-2426.	4.9	33
21	A comparison of PM _{2.5} -bound polycyclic aromatic hydrocarbons in summer Beijing (China) and Delhi (India). Atmospheric Chemistry and Physics, 2020, 20, 14303-14319.	4.9	30
22	Emissions of non-methane volatile organic compounds from combustion of domestic fuels in Delhi, India. Atmospheric Chemistry and Physics, 2021, 21, 2383-2406.	4.9	29
23	Spatial distribution of biomass consumption as energy in rural areas of the Indo-Gangetic plain. Biomass and Bioenergy, 2011, 35, 932-941.	5.7	28
24	In situ ozone production is highly sensitive to volatile organic compounds in Delhi, India. Atmospheric Chemistry and Physics, 2021, 21, 13609-13630.	4.9	28
25	Short-term degradation of air quality during major firework events in Delhi, India. Meteorology and Atmospheric Physics, 2019, 131, 753-764.	2.0	27
26	Speciation of metals in Yamuna river sediments. Science of the Total Environment, 1993, 136, 229-242.	8.0	25
27	Emission Estimates of Particulate PAHs from Biomass Fuels Used in Delhi, India. Human and Ecological Risk Assessment (HERA), 2012, 18, 871-887.	3.4	25
28	Levels and sources of organic compounds in fine ambient aerosols over National Capital Region of India. Environmental Science and Pollution Research, 2018, 25, 31071-31090.	5.3	24
29	Seasonal Variation of Carbonaceous Species of PM10 Over Urban Sites of National Capital Region of India. Aerosol Science and Engineering, 2020, 4, 111-123.	1.9	23
30	Sources of non-methane hydrocarbons in surface air in Delhi, India. Faraday Discussions, 2021, 226, 409-431.	3.2	23
31	Seasonal variations and source profile of n-alkanes in particulate matter (PM10) at a heavy traffic site, Delhi. Environmental Monitoring and Assessment, 2017, 189, 43.	2.7	22
32	Study on particulate polycyclic aromatic hydrocarbons over Bay of Bengal in winter season. Atmospheric Research, 2014, 145-146, 205-213.	4.1	18
33	Temporal Variation of Phthalic Acid Esters (PAEs) in Ambient Atmosphere of Delhi. Bulletin of Environmental Contamination and Toxicology, 2018, 101, 153-159.	2.7	18
34	Atmospheric Fine and Coarse Mode Aerosols at Different Environments of India and the Bay of Bengal During Winter-2014: Implications of a Coordinated Campaign. Mapan - Journal of Metrology Society of India, 2014, 29, 273-284.	1.5	17
35	Synthesis and characterization of novel nanocomposite by using kaolinite and carbon nanotubes. Applied Clay Science, 2018, 155, 30-36.	5.2	17
36	Characterization of Gaseous and Particulate Polycyclic Aromatic Hydrocarbons in Ambient Air of Delhi, India. Polycyclic Aromatic Compounds, 2012, 32, 556-579.	2.6	15

Ranu Gadi

#	Article	IF	CITATIONS
37	Seasonal analysis of submicron aerosol in Old Delhi using high-resolution aerosol mass spectrometry: chemical characterisation, source apportionment and new marker identification. Atmospheric Chemistry and Physics, 2021, 21, 10133-10158.	4.9	15
38	Assimilation of Indian radar data with ADAS and 3DVAR techniques for simulation of a small-scale tropical cyclone using ARPS model. Natural Hazards, 2011, 58, 15-29.	3.4	14
39	Adsorption of lead on clay-CNT nanocomposite in aqueous media by UV-Vis-spectrophotometer: kinetics and thermodynamic studies. Emergent Materials, 2019, 2, 441-451.	5.7	13
40	PM ₁ composition and source apportionment at two sites in Delhi, India, across multiple seasons. Atmospheric Chemistry and Physics, 2021, 21, 11655-11667.	4.9	13
41	Emissions of Polycyclic Aromatic Hydrocarbons in the Atmosphere: An Indian Perspective. Human and Ecological Risk Assessment (HERA), 2010, 16, 1145-1168.	3.4	11
42	Comprehensive organic emission profiles, secondary organic aerosol production potential, and OH reactivity of domestic fuel combustion in Delhi, India. Environmental Science Atmospheres, 2021, 1, 104-117.	2.4	11
43	Variations in chemical composition of aerosol during Diwali over mega city Delhi, India. Urban Climate, 2021, 40, 100991.	5.7	9
44	Gridded distribution of total suspended particulate matter (TSP) and their chemical characterization over Delhi during winter. Environmental Science and Pollution Research, 2022, 29, 17892-17918.	5.3	8
45	Emission estimates and inventories of non-methane volatile organic compounds from anthropogenic burning sources in India. Atmospheric Environment: X, 2021, 11, 100115.	1.4	6
46	Identification of Carbonaceous Species and FTIR Profiling of PM2.5 Aerosols for Source Estimation in Old Delhi Region of India. Mapan - Journal of Metrology Society of India, 2022, 37, 529-544.	1.5	6
47	Determination of different soluble species in yamuna river waters. Environmental Technology (United) Tj ETQq1	1 0,78431 2.2	.4 rgBT /Ove
48	Variation in Air Quality over Delhi Region: A Comparative Study for 2019 and 2020. Aerosol Science and Engineering, 2022, 6, 278-295.	1.9	4
49	Biological methods for speciation of heavy metals: different approaches. Critical Reviews in Biotechnology, 2009, 29, 307-312.	9.0	2
50	Oxidative potential of ambient fine particulate matter for ranking of emission sources: an insight for emissions reductions. Air Quality, Atmosphere and Health, 2021, 14, 1149-1153.	3.3	1
51	Ficus racemosa as corrosion inhibitor for mild steel in acid medium. Emerging Materials Research, 2017, 6, 117-123.	0.7	0
52	Biological methods for speciation of heavy metals: different approaches. Critical Reviews in Biotechnology, 2009, 00, 090925120326010-6.	9.0	0