
Filippo Consolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6199089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-Invasive Ventilation in the Prehospital Emergency Setting: A Systematic Review and Meta-Analysis. Prehospital Emergency Care, 2023, 27, 566-574.	1.0	3
2	Real-Time Analysis of the Log Files of the HeartWare Continuous-Flow Left Ventricular Assist Device for the Early Diagnosis of Pump Thrombosis: a Step Forward Toward Clinical Translation. Journal of Cardiovascular Translational Research, 2022, 15, 408-415.	1.1	4
3	Future Perspectives of Mechanical Circulatory Support with Left Ventricular Assist Devices: Lessons Learned from the HeartWare Ventricular Assist Device. ASAIO Journal, 2022, 68, 1-2.	0.9	3
4	Insights Into the Low Rate of In-Pump Thrombosis With the HeartMate 3: Does the Artificial Pulse Improve Washout?. Frontiers in Cardiovascular Medicine, 2022, 9, 775780.	1.1	12
5	Platelet activation state in early stages of Covid-19. Minerva Anestesiologica, 2022, , .	0.6	2
6	Inflow cannula obstruction of the HeartWare left ventricular assist device: what do we really know?. Cardiovascular Pathology, 2021, 50, 107299.	0.7	8
7	Metabolomic profile of patients with left ventricular assist devices: a pilot study. Annals of Cardiothoracic Surgery, 2021, 10, 240-247.	0.6	3
8	Characterization of the competing role of surface-contact and shear stress on platelet activation in the setting of blood contacting devices. International Journal of Artificial Organs, 2021, 44, 1013-1020.	0.7	2
9	Log Files of Continuous-Flow Left Ventricular Assist Devices Reveal Diurnal Changes of Pump Parameters Beyond Circadian Variations. ASAIO Journal, 2021, 67, e62-e63.	0.9	2
10	Bleeding in patients with continuous-flow left ventricular assist devices: acquired von Willebrand disease or antithrombotics?. European Journal of Cardio-thoracic Surgery, 2021, , .	0.6	4
11	Thrombotic Risk of Rotor Speed Modulation Regimes of Contemporary Centrifugal Continuous-flow Left Ventricular Assist Devices. ASAIO Journal, 2021, 67, 737-745.	0.9	30
12	Influence of Different Antithrombotic Regimens on Platelet-Mediated Thrombin Generation in Patients with Left Ventricular Assist Devices. ASAIO Journal, 2020, 66, 415-422.	0.9	16
13	The MICELI (MICrofluidic, ELectrical, Impedance): Prototyping a Point-of-Care Impedance Platelet Aggregometer. International Journal of Molecular Sciences, 2020, 21, 1174.	1.8	4
14	Smoothed Particle Hydrodynamics multiphase modelling of an experimental microfluidic device for conformal coating of pancreatic islets. Medical Engineering and Physics, 2020, 77, 19-30.	0.8	4
15	Letter by Consolo and Pappalardo Regarding Article, "Comprehensive Analysis of Stroke in the Long-Term Cohort of the MOMENTUM 3 Study: A Randomized Controlled Trial of the Heartmate 3 Versus the Heartmate II Cardiac Pump― Circulation, 2019, 140, e163-e164.	1.6	1
16	Log files analysis and evaluation of circadian patterns for the early diagnosis of pump thrombosis with a centrifugal continuous-flow left ventricular assist device. Journal of Heart and Lung Transplantation, 2019, 38, 1077-1086.	0.3	16
17	Do we need aspirin in HeartMate 3 patients?. European Journal of Heart Failure, 2019, 21, 815-817.	2.9	20
18	Shear-Mediated Platelet Activation Enhances Thrombotic Complications in Patients With LVADs and Is Reversed After Heart Transplantation. ASAIO Journal, 2019, 65, e33-e35.	0.9	14

FILIPPO CONSOLO

#	Article	IF	CITATIONS
19	Prothrombotic activity of cytokine-activated endothelial cells and shear-activated platelets in the setting of ventricular assist device support. Journal of Heart and Lung Transplantation, 2019, 38, 658-667.	0.3	17
20	Blood damage in Left Ventricular Assist Devices: Pump thrombosis or system thrombosis?. International Journal of Artificial Organs, 2019, 42, 113-124.	0.7	28
21	Which Antiplatelet Therapy in Patients With Left Ventricular Assist Device and Aspirin Allergy?. Annals of Thoracic Surgery, 2018, 105, e47-e49.	0.7	2
22	Platelet activation is a preoperative risk factor for the development of thromboembolic complications in patients with continuousâ€flow left ventricular assist device. European Journal of Heart Failure, 2018, 20, 792-800.	2.9	40
23	Experimental quantification of the fluid dynamics in blood-processing devices through 4D-flow imaging: A pilot study on a real oxygenator/heat-exchanger module. Journal of Biomechanics, 2018, 68, 14-23.	0.9	5
24	Microfluidic flow-based platforms for induction and analysis of dynamic shear-mediated platelet activation—Initial validation versus the standardized hemodynamic shearing device. Biomicrofluidics, 2018, 12, 042208.	1.2	8
25	Peripheral VA-ECMO venous cannulation: which side for the femoral cannula?. Intensive Care Medicine, 2017, 43, 468-469.	3.9	7
26	Microfludic platforms for the evaluation of anti-platelet agent efficacy under hyper-shear conditions associated with ventricular assist devices. Medical Engineering and Physics, 2017, 48, 31-38.	0.8	9
27	High Frequency Components of Hemodynamic Shear Stress Profiles are a Major Determinant of Shear-Mediated Platelet Activation in Therapeutic Blood Recirculating Devices. Scientific Reports, 2017, 7, 4994.	1.6	36
28	Feasibility of pig and humanâ€derived aortic valve interstitial cells seeding on fixativeâ€free decellularized animal pericardium. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 345-356.	1.6	19
29	On the Use of the Platelet Activity State Assay for the In Vitro Quantification of Platelet Activation in Blood Recirculating Devices for Extracorporeal Circulation. Artificial Organs, 2016, 40, 971-980.	1.0	15
30	Microfluidic Approaches for the Assessment of Blood Cell Trauma: A Focus on Thrombotic Risk in Mechanical Circulatory Support Devices. International Journal of Artificial Organs, 2016, 39, 184-193.	0.7	17
31	A dynamic distention protocol for whole-organ bladder decellularization: histological and biomechanical characterization of the acellular matrix. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E101-E112.	1.3	18
32	Shear-mediated platelet activation in patients implanted with continuous flow LVADs: A preliminary study utilizing the platelet activity state (PAS) assay. , 2015, 2015, 1255-8.		8
33	A numerical performance assessment of a commercial cardiopulmonary by-pass blood heat exchanger. Medical Engineering and Physics, 2015, 37, 584-592.	0.8	10
34	Monophasic and Biphasic Electrical Stimulation Induces a Precardiac Differentiation in Progenitor Cells Isolated from Human Heart. Stem Cells and Development, 2014, 23, 888-898.	1.1	52
35	Mechanical Compliance and Immunological Compatibility of Fixative-Free Decellularized/Cryopreserved Human Pericardium. PLoS ONE, 2013, 8, e64769.	1.1	39
36	Computational modeling for the optimization of a cardiogenic 3D bioprocess of encapsulated embryonic stem cells. Biomechanics and Modeling in Mechanobiology, 2012, 11, 261-277.	1.4	24

FILIPPO CONSOLO

Outflow Conditions for Image-Based Hemodynamic Models of the Carotid Bifurcation: Implications	
³⁷ for Indicators of Abnormal Flow. Journal of Biomechanical Engineering, 2010, 132, 091005.	80
 Multilevel Experimental and Modelling Techniques for Bioartificial Scaffolds and Matrices. 1.5 	1
A Numerical Multiscale Study of the Haemodynamics in an Image-Based Model of Human Carotid Artery Bifurcation. , 2009, , .	Ο
40A Computational Model for the Optimization of Transport Phenomena in a Rotating Hollow-Fiber Bioreactor for Artificial Liver. Tissue Engineering - Part C: Methods, 2009, 15, 41-55.1.1	27
41 A CFD Computational Model for the Optimization of Transport Phenomena in a Rotating Hollow Fiber Bioreactor for Artificial Liver. , 2008, , .	Ο