
Blair Calancie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6199073/publications.pdf Version: 2024-02-01

RIAID CALANCIE

#	Article	IF	CITATIONS
1	Does the Direction of Kinesiology Tape Application Influence Muscle Activation in Asymptomatic Individuals?. International Journal of Sports Physical Therapy, 2021, 16, 135-144.	0.5	5
2	Superconditioning TMS unmasks latent voluntary innervation in MND – A case report. Journal of the Neurological Sciences, 2019, 398, 27-30.	0.3	1
3	Superconditioning TMS for examining upper motor neuron function in MND. Experimental Brain Research, 2019, 237, 2087-2103.	0.7	3
4	Four-pulse transcranial magnetic stimulation using multiple conditioning inputs. Normative MEP responses. Experimental Brain Research, 2018, 236, 1205-1218.	0.7	4
5	Cauda equina repair in the rat: Part 3. Axonal regeneration across Schwann cell—Seeded collagen foam. Muscle and Nerve, 2018, 57, E78-E84.	1.0	2
6	Intraoperative Neuromonitoring and Alarm Criteria for Judging MEP Responses to Transcranial Electric Stimulation: The Threshold-Level Method. Journal of Clinical Neurophysiology, 2017, 34, 12-21.	0.9	31
7	Efficacy of QuadroPulse rTMS for improving motor function after spinal cord injury: Three case studies. Journal of Spinal Cord Medicine, 2016, 39, 50-57.	0.7	17
8	Innervation and function of rat tail muscles for modeling cauda equina injury and repair. Muscle and Nerve, 2015, 52, 94-102.	1.0	6
9	Cauda Equina Repair in the Rat: Part 2. Time Course of Ventral Root Conduction Failure. Journal of Neurotrauma, 2012, 29, 1683-1690.	1.7	14
10	Comparison of training methods to improve walking in persons with chronic spinal cord injury: a randomized clinical trial. Journal of Spinal Cord Medicine, 2011, 34, 362-379.	0.7	92
11	Cauda Equina Repair in the Rat: Part 1. Stimulus-Evoked EMG for Identifying Spinal Nerves Innervating Intrinsic Tail Muscles. Journal of Neurotrauma, 2009, 26, 1405-1416.	1.7	4
12	A Guidance Channel Seeded With Autologous Schwann Cells for Repair of Cauda Equina Injury in a Primate Model. Journal of Spinal Cord Medicine, 2009, 32, 379-388.	0.7	16
13	Alarm Criteria for Motor-Evoked Potentials. Spine, 2008, 33, 406-414.	1.0	76
14	Increased evoked EMG thresholds for tail muscles in a rat cauda equina (CE) injury model. FASEB Journal, 2007, 21, A1273.	0.2	0
15	Spinal Myoclonus After Spinal Cord Injury. Journal of Spinal Cord Medicine, 2006, 29, 413-424.	0.7	50
16	Epidemiology and Demography of Acute Spinal Cord Injury in a Large Urban Setting. Journal of Spinal Cord Medicine, 2005, 28, 92-96.	0.7	25
17	Interlimb reflex activity after spinal cord injury in man: strengthening response patterns are consistent with ongoing synaptic plasticity. Clinical Neurophysiology, 2005, 116, 75-86.	0.7	47
18	Rate-coding of spinal motoneurons with high-frequency magnetic stimulation of human motor cortex. Canadian Journal of Physiology and Pharmacology, 2004, 82, 740-748.	0.7	6

BLAIR CALANCIE

#	Article	lF	CITATIONS
19	EMG for assessing the recovery of voluntary movement after acute spinal cord injury in man. Clinical Neurophysiology, 2004, 115, 1748-1759.	0.7	40
20	Tendon reflexes for predicting movement recovery after acute spinal cord injury in humans. Clinical Neurophysiology, 2004, 115, 2350-2363.	0.7	37
21	Interlimb reflexes and synaptic plasticity become evident months after human spinal cord injury. Brain, 2002, 125, 1150-1161.	3.7	65
22	Relationship Between Emg And Muscle Force After Spinal Cord Injury. Journal of Spinal Cord Medicine, 2001, 24, 19-25.	0.7	20
23	Threshold-level repetitive transcranial electrical stimulation for intraoperative monitoring of central motor conduction. Journal of Neurosurgery: Spine, 2001, 95, 161-168.	0.9	55
24	Neural plasticity as revealed by the natural progression of movement expression — Both voluntary a€" In humans after spinal cord injury. Progress in Brain Research, 2000, 128, 71-88.	0.9	12
25	Distribution and Latency of Muscle Responses to Transcranial Magnetic Stimulation of Motor Cortex After Spinal Cord Injury in Humans. Journal of Neurotrauma, 1999, 16, 49-67.	1.7	74
26	"Threshold-level―multipulse transcranial electrical stimulation of motor cortex for intraoperative monitoring of spinal motor tracts: description of method and comparison to somatosensory evoked potential monitoring. Journal of Neurosurgery, 1998, 88, 457-470.	0.9	271
27	Central Cord Syndrome of Cervical Spinal Cord Injury: Widespread Changes in Muscle Recruitment Studied by Voluntary Contractions and Transcranial Magnetic Stimulation. Experimental Neurology, 1997, 148, 399-406.	2.0	34
28	Motor unit forces and recruitment patterns after cervical spinal cord injury. , 1997, 20, 212-220.		53
29	Comparison of peripheral Ia and corticomotoneuronal composite EPSPs in human motoneurons. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1996, 101, 431-437.	1.4	20
30	Central nervous system plasticity after spinal cord injury in man: interlimb reflexes and the influence of cutaneous stimulation. Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control, 1996, 101, 304-315.	1.4	71
31	Mechanical and fatigue properties of wrist flexor muscles during repetitive contractions after cervical spinal cord injury. Archives of Physical Medicine and Rehabilitation, 1995, 76, 929-933.	0.5	10
32	Involuntary stepping after chronic spinal cord injury. Brain, 1994, 117, 1143-1159.	3.7	335
33	Evidence that alterations in presynaptic inhibition contribute to segmental hypo- and hyperexcitability after spinal cord injury in man. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1993, 89, 177-186.	2.0	211
34	Isoflurane-induced attenuation of motor evoked potentials caused by electrical motor cortex stimulation during surgery. Journal of Neurosurgery, 1991, 74, 897-904.	0.9	121
35	Cauda equina repair in the rat: 1. Stimulus-evoked EMG for identifying spinal nerves innervating intrinsic tail muscles. Journal of Neurotrauma, 0, , 110306202455053.	1.7	0