Jian Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6199025/publications.pdf

Version: 2024-02-01

31 papers	1,307 citations	331670 21 h-index	414414 32 g-index
32 all docs	32 docs citations	32 times ranked	845 citing authors

#	Article	IF	CITATIONS
1	Effect of Mn Modification on Microstructure and Mechanical Properties of Magnesium Alloy with Low Gd Content. Metals and Materials International, 2021, 27, 1483-1492.	3.4	14
2	Effect of Mn Modification on the Corrosion Susceptibility of Mg–Mn Alloys by Magnesium Scrap. Acta Metallurgica Sinica (English Letters), 2021, 34, 1-11.	2.9	27
3	Research on the microstructure and properties of a multi-pass friction stir processed 6061Al coating for AZ31 Mg alloy. Journal of Magnesium and Alloys, 2019, 7, 696-706.	11.9	35
4	Evolution of the microstructure, texture and thermal conductivity of as-extruded ZM60 magnesium alloy in pre-compression. Journal of Alloys and Compounds, 2019, 775, 707-713.	5 . 5	16
5	Influence of aging prior to extrusion on the microstructure and corrosion resistance of Mg–8Sn–2Zn–0.2Mn alloy. Journal of Alloys and Compounds, 2019, 780, 783-791.	5.5	20
6	Effects of precipitates and its interface on thermal conductivity of Mg–12Gd alloy during aging treatment. Materials Characterization, 2018, 138, 284-288.	4.4	37
7	Flow and fracture study for ZK60 alloy at dynamic strain rates and different loading states. Materials Science & Science & Properties, Microstructure and Processing, 2018, 724, 208-219.	5 . 6	15
8	On the microstructure and mechanical property of as-extruded Mg–Sn–Zn alloy with Cu addition. Journal of Alloys and Compounds, 2018, 744, 234-242.	5 . 5	42
9	Effects of Ca Addition on the Mechanical Properties and Corrosion Behavior of ZM21 Wrought Alloys. Acta Metallurgica Sinica (English Letters), 2017, 30, 53-65.	2.9	30
10	Microstructure and Thermal Conductivity of As-Cast and As-Solutionized Mg–Rare Earth Binary Alloys. Journal of Materials Science and Technology, 2017, 33, 1240-1248.	10.7	52
11	Modeling and application of constitutive model considering the compensation of strain during hot deformation. Journal of Alloys and Compounds, 2016, 681, 455-470.	5 . 5	45
12	Hot deformation behavior of homogenized Al–3.2Mg–0.4Er aluminum alloy. Transactions of Nonferrous Metals Society of China, 2016, 26, 945-955.	4.2	13
13	Study the effect of SiC content on the wear behavior and mechanism of as-extruded SiCp/Al-Cu-Mg-Zn alloy under simulating drilling operation. Surface and Interface Analysis, 2016, 48, 853-860.	1.8	4
14	Effect of Ce addition on the microstructure, thermal conductivity and mechanical properties of Mg–0.5Mn alloys. Journal of Alloys and Compounds, 2016, 661, 402-410.	5 . 5	56
15	Effect of Ca addition on the corrosion behavior of Mg–Al–Mn alloy. Applied Surface Science, 2016, 369, 92-100.	6.1	111
16	The Effect of Icosahedral Phase on Dynamic Recrystallization Evolution and Hot Workability of Mg-2.0Zn-0.3Zr-0.2Y Alloy. Journal of Materials Engineering and Performance, 2015, 24, 3502-3512.	2.5	8
17	Effect of Ce addition on thermal conductivity of Mg–2Zn–1Mn alloy. Journal of Alloys and Compounds, 2015, 639, 556-562.	5.5	37
18	Effect of extrusion temperature on the microstructure and thermal conductivity of Mg–2.0Zn–1.0Mn–0.2Ce alloys. Materials and Design, 2015, 87, 914-919.	7.0	51

#	Article	IF	CITATIONS
19	Mechanical properties and energy absorption of extruded Mg–2.0Zn–0.3Zr alloy with Y addition. Rare Metals, 2015, 34, 314-323.	7.1	10
20	The effect of 14H LPSO phase on dynamic recrystallization behavior and hot workability of Mg–2.0Zn–0.3Zr–5.8Y alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 599, 150-159.	5.6	88
21	Thermal and electrical conductivity of binary magnesium alloys. Journal of Materials Science, 2014, 49, 3107-3124.	3.7	114
22	Dynamic recrystallization behavior and hot workability of Mg–2.0Zn–0.3Zr–0.9Y alloy by using hot compression test. Materials & Design, 2014, 53, 357-365.	5.1	103
23	Correlation on the Electrical and Thermal Conductivity for Binary Mg–Al and Mg–Zn Alloys. International Journal of Thermophysics, 2013, 34, 1336-1346.	2.1	46
24	High-conductivity binary Mg–Zn sheet processed by cold rolling and subsequent aging. Journal of Alloys and Compounds, 2013, 578, 493-500.	5.5	54
25	The effect of addition of Nd and Ce on the microstructure and mechanical properties of ZM21 Mg alloy. Journal of Magnesium and Alloys, 2013, 1, 94-100.	11.9	53
26	The effect of LPSO phase on hot deformation behavior and dynamic recrystallization evolution of Mg–2.0Zn–0.3Zr–5.8Y alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 579, 209-216.	5.6	56
27	Constitutive modeling of dynamic recrystallization kinetics and processing maps of Mg–2.0Zn–0.3Zr alloy based on true stress–strain curves. Materials Science & Departies, Microstructural Materials: Properties, Microstructure and Processing, 2013, 560, 727-733.	5.6	79
28	Influence of stacking fault energy on formation of long period stacking ordered structures in Mg–Zn–Y–Zr alloys. Progress in Natural Science: Materials International, 2011, 21, 485-490.	4.4	42
29	Microstructure and mechanical properties of Mg–Gd–Zr alloys with low gadolinium contents. Journal of Materials Science, 2011, 46, 5838-5846.	3.7	39
30	An improved neural network model for prediction of mechanical properties of magnesium alloys. Science in China Series D: Earth Sciences, 2009, 52, 155-160.	0.9	5
31	Microstructure evolution of cast Al-Si-Cu alloys in solution treatment. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 184-188.	1.0	3