
Matt A Yost

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6199/publications.pdf Version: 2024-02-01

Μλττ Δ Υρετ

#	Article	IF	CITATIONS
1	Relationships of onâ€farm soil health scores with corn and soybean yield in the midwestern United States. Soil Science Society of America Journal, 2022, 86, 91-105.	2.2	11
2	Water in the West: Trends, production efficiency, and a call for open data. Journal of Environmental Management, 2022, 306, 114330.	7.8	6
3	Biochar had minor effects on yield, quality, and water availability of irrigated alfalfa, corn, and wheat. Agronomy Journal, 2022, 114, 1717-1730.	1.8	4
4	Tillage method and glyphosateâ€resistant alfalfa termination timing affect soil properties and subsequent corn yield. Agronomy Journal, 2021, 113, 321-334.	1.8	3
5	Nitrogen fertilization and glyphosateâ€resistant alfalfa termination method effects on firstâ€year silage corn. Agronomy Journal, 2021, 113, 1712-1723.	1.8	2
6	Nitrogen fertilizer needs of firstâ€year small grain forages following alfalfa. Agronomy Journal, 2021, 113, 2006-2017.	1.8	2
7	Soil health spatial-temporal variation influence soil security on Midwestern, U.S. farms. Soil Security, 2021, 3, 100005.	2.3	13
8	Nitrogen requirements of firstâ€year small grains after alfalfa. Soil Science Society of America Journal, 2021, 85, 1698-1709.	2.2	5
9	Planting depth and withinâ€field soil variability impacts on corn stand establishment and yield. , 2021, 4, e20186.		3
10	Cropping system and landscape characteristics influence longâ€ŧerm grain cropÂprofitability. , 2020, 3, e20099.		5
11	Relating fourâ€day soil respiration to corn nitrogen fertilizer needs across 49 U.S. Midwest fields. Soil Science Society of America Journal, 2020, 84, 1195-1208.	2.2	11
12	Public–private collaboration toward research, education and innovation opportunities in precision agriculture. Precision Agriculture, 2019, 20, 4-18.	6.0	25
13	A long-term precision agriculture system sustains grain profitability. Precision Agriculture, 2019, 20, 1177-1198.	6.0	28
14	Cropping System, Landscape Position, and Topsoil Depth Affect Soil Fertility and Nutrient Buffering. Soil Science Society of America Journal, 2018, 82, 382-391.	2.2	7
15	Evaluating strategies for sustainable intensification of US agriculture through the Long-Term Agroecosystem Research network. Environmental Research Letters, 2018, 13, 034031.	5.2	75
16	Miscanthus × Giganteus Growth and Nutrient Export on 22 Producer Fields. Bioenergy Research, 2018, 11, 426-439.	3.9	4
17	On-farm soil health evaluations: Challenges and opportunities. Journal of Soils and Water Conservation, 2017, 72, 26A-31A.	1.6	32
18	Long-term impact of a precision agriculture system on grain crop production. Precision Agriculture, 2017, 18, 823-842.	6.0	61

MATT A YOST

#	Article	IF	CITATIONS
19	Topsoil Thickness Influences Nitrogen Management of Switchgrass. Bioenergy Research, 2017, 10, 465-477.	3.9	4
20	Topsoil Thickness Effects on Corn, Soybean, and Switchgrass Production on Claypan Soils. Agronomy Journal, 2017, 109, 782-794.	1.8	12
21	Using Topsoil Thickness to Improve Siteâ€Specific Phosphorus and Potassium Management on Claypan Soil. Agronomy Journal, 2017, 109, 2291-2301.	1.8	3
22	Do Soil Tests Help Forecast Nitrogen Response in Firstâ€Year Corn Following Alfalfa on Fineâ€Textured Soils?. Soil Science Society of America Journal, 2017, 81, 1640-1651.	2.2	4
23	Yield Potential and Nitrogen Requirements of <i>Miscanthus</i> × <i>giganteus</i> on Eroded Soil. Agronomy Journal, 2017, 109, 684-695.	1.8	13
24	Longâ€Term Impacts of Cropping Systems and Landscape Positions on Claypanâ€Soil Grain Crop Production. Agronomy Journal, 2016, 108, 713-725.	1.8	17
25	Impact of rhizome quality on Miscanthus establishment in claypan soil landscapes. Industrial Crops and Products, 2016, 85, 331-340.	5.2	4
26	Stand Age Affects Fertilizer Nitrogen Response in First‥ear Corn following Alfalfa. Agronomy Journal, 2015, 107, 486-494.	1.8	11
27	Field‣pecific Fertilizer Nitrogen Requirements for First‥ear Corn following Alfalfa. Agronomy Journal, 2014, 106, 645-658.	1.8	23
28	Alfalfa Stand Length and Subsequent Crop Patterns in the Upper Midwestern United States. Agronomy Journal, 2014, 106, 1697-1708.	1.8	13
29	Opportunities Exist to Improve Alfalfa and Manure Nitrogen Crediting in Corn following Alfalfa. Agronomy Journal, 2014, 106, 2098-2106.	1.8	6
30	Second‥ear Corn after Alfalfa Often Requires No Fertilizer Nitrogen. Agronomy Journal, 2014, 106, 659-669.	1.8	20
31	First‥ear Corn after Alfalfa Showed No Response to Fertilizer Nitrogen under Noâ€Tillage. Agronomy Journal, 2013, 105, 208-214.	1.8	21
32	Nitrogen Requirements of First‥ear Corn following Alfalfa Were Not Altered by Fallâ€Applied Manure. Agronomy Journal, 2013, 105, 1061-1069.	1.8	9
33	Alfalfa Nitrogen Credit to First‥ear Corn: Potassium, Regrowth, and Tillage Timing Effects. Agronomy Journal, 2012, 104, 953-962.	1.8	36
34	Potassium Management during the Rotation from Alfalfa to Corn. Agronomy Journal, 2011, 103, 1785-1793.	1.8	5