Zachary J Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6198379/publications.pdf

Version: 2024-02-01

82 papers	1,843 citations	20 h-index	276875 41 g-index
82	82	82	3119
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Epiâ€illumination darkâ€field microscopy enables direct visualization of unlabeled small organisms with high spatial and temporal resolution. Journal of Biophotonics, 2022, 15, e202100185.	2.3	5
2	Simultaneous 3D deconvolution and halo removal for spatial light interference microscopy through a two-edge apodized Wiener filter. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39, 287.	1.5	1
3	Label-free imaging of intracellular organelle dynamics using flat-fielding quantitative phase contrast microscopy (FF-QPCM). Optics Express, 2022, 30, 9505.	3.4	13
4	Applying limiting entropy to quantify the alignment of collagen fibers by polarized light imaging. Mathematical Biosciences and Engineering, 2021, 18, 2331-2356.	1.9	1
5	Fast confocal Raman imaging <i>via</i> context-aware compressive sensing. Analyst, The, 2021, 146, 2348-2357.	3.5	15
6	Recent advances in structured illumination microscopy. JPhys Photonics, 2021, 3, 024009.	4.6	25
7	Azo-Enhanced Raman Scattering for Enhancing the Sensitivity and Tuning the Frequency of Molecular Vibrations. ACS Central Science, 2021, 7, 768-780.	11.3	20
8	Organelle-specific phase contrast microscopy enables gentle monitoring and analysis of mitochondrial network dynamics. Biomedical Optics Express, 2021, 12, 4363.	2.9	18
9	A sample-preparation-free, automated, sample-to-answer system for cell counting in human body fluids. Analytical and Bioanalytical Chemistry, 2021, 413, 5025-5035.	3.7	5
10	Vibrational Fingerprint Analysis of an Azo-based Resonance Raman Scattering Probe for Imaging Proton Distribution in Cellular Lysosomes. Analytical Chemistry, 2021, 93, 15659-15666.	6.5	6
11	Improving the limit of detection in portable luminescent assay readers through smart optical design. Journal of Biophotonics, 2020, 13, e201900241.	2.3	10
12	Low resolution Raman: the impact of spectral resolution on limit of detection and imaging speed in hyperspectral imaging. Analyst, The, 2020, 145, 6607-6616.	3.5	9
13	Combined Morpho-Chemical Profiling of Individual Extracellular Vesicles and Functional Nanoparticles without Labels. Analytical Chemistry, 2020, 92, 5585-5594.	6.5	25
14	Nanogap Plasmonic Structures Fabricated by Switchable Capillaryâ€Force Driven Selfâ€Assembly for Localized Sensing of Anticancer Medicines with Microfluidic SERS. Advanced Functional Materials, 2020, 30, 1909467.	14.9	91
15	Optical volumetric projection with large NA objectives for fast high-resolution 3D imaging of neural signals. Biomedical Optics Express, 2020, 11 , 3769.	2.9	4
16	Nanometer precise red blood cell sizing using a cost-effective quantitative dark field imaging system. Biomedical Optics Express, 2020, 11, 5950.	2.9	3
17	Lin28 enhances de novo fatty acid synthesis to promote cancer progression via SREBP â€1. EMBO Reports, 2019, 20, e48115.	4.5	21
18	Dual-phone illumination-imaging system for high resolution and large field of view multi-modal microscopy. Lab on A Chip, 2019, 19, 825-836.	6.0	21

#	Article	IF	CITATIONS
19	Quantitative phase microscopy with enhanced contrast and improved resolution through ultraâ€oblique illumination (UOâ€QPM). Journal of Biophotonics, 2019, 12, e201900011.	2.3	23
20	A lowâ€cost, automated parasite diagnostic system via a portable, robotic microscope and deep learning. Journal of Biophotonics, 2019, 12, e201800410.	2.3	28
21	Simultaneous recovery of both bright and dim structures from noisy fluorescence microscopy images using a modified TV constraint. Journal of Microscopy, 2019, 275, 24-35.	1.8	2
22	Automated morphometry toolbox for analysis of microscopic model organisms using simple bright-field imaging. Biology Open, 2019, 8, .	1.2	7
23	A smart preparation strategy for point-of-care cellular counting of trace volumes of human blood. Analytical and Bioanalytical Chemistry, 2019, 411, 2767-2780.	3.7	9
24	Editorial: Plasmonic Technologies for Bioanalytical Applications. Frontiers in Chemistry, 2019, 7, 865.	3.6	4
25	Simple adaptive mobile phone screen illumination for dual phone differential phase contrast (DPDPC) microscopy. Biomedical Optics Express, 2019, 10, 4369.	2.9	11
26	Morphology and structure of the metal–organic framework ZIF-8 during crystallisation measured by a new technique: dynamic angle-resolved second-harmonic scattering (AD-SHS). Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e671-e671.	0.1	0
27	Performance of a costâ€effective and automated blood counting system for resourceâ€limited settings operated by trained and untrained users. Journal of Biophotonics, 2018, 11, e201700030.	2.3	10
28	Structured illumination microscopy with interleaved reconstruction (SIMILR). Journal of Biophotonics, 2018, 11, e201700090.	2.3	25
29	Screening of nutritional and genetic anemias using elastic light scattering. Lab on A Chip, 2018, 18, 3263-3271.	6.0	2
30	Optical volumetric projection for fast 3D imaging through circularly symmetric pupil engineering. Biomedical Optics Express, 2018, 9, 437.	2.9	5
31	Morphology and structure of ZIF-8 during crystallisation measured by dynamic angle-resolved second harmonic scattering. Nature Communications, 2018, 9, 3418.	12.8	29
32	A modular, open-source, slide-scanning microscope for diagnostic applications in resource-constrained settings. PLoS ONE, 2018, 13, e0194063.	2.5	31
33	Benchtop and animal validation of a portable fluorescence microscopic imaging system for potential use in cholecystectomy. Journal of Biomedical Optics, 2018, 23, 1.	2.6	1
34	Evaluation of anemia diagnosis based on elastic light scattering (Conference Presentation)., 2017,,.		0
35	Field performance of a low-cost and fully-automated blood counting system operated by trained and untrained users (Conference Presentation). , 2017, , .		0
36	Time-resolved SERS for characterizing extracellular vesicles. , 2017, , .		1

#	Article	IF	Citations
37	Fsâ€laser ablation of teeth is temperature limited and provides information about the ablated components. Journal of Biophotonics, 2017, 10, 1292-1304.	2.3	17
38	Multispectral Optical Tweezers for Biochemical Fingerprinting of CD9-Positive Exosome Subpopulations. Analytical Chemistry, 2017, 89, 5357-5363.	6.5	69
39	Single particle analysis: Methods for detection of platelet extracellular vesicles in suspension (excluding flow cytometry). Platelets, 2017, 28, 249-255.	2.3	30
40	A new red cell index and portable RBC analyzer for screening of iron deficiency and Thalassemia minor in a Chinese population. Scientific Reports, 2017, 7, 10510.	3.3	17
41	Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy. Sensors, 2017, 17, 1592.	3.8	29
42	Subnanometer-resolved chemical imaging via multivariate analysis of tip-enhanced Raman maps. Light: Science and Applications, 2017, 6, e17098-e17098.	16.6	36
43	Simple, cost effective blood counting without needing trained users. , 2017, , .		0
44	Smart fast blood counting of trace volumes of body fluids from various mammalian species using a compact custom-built microscope cytometer (Conference Presentation). , 2016, , .		0
45	Raman spectroscopy of single extracellular vesicles reveals subpopulations with varying membrane content (Conference Presentation)., 2016,,.		0
46	The effects of laser repetition rate on femtosecond laser ablation of dry bone: a thermal and LIBS study. Journal of Biophotonics, 2016, 9, 171-180.	2.3	22
47	In vivo detection of cervical intraepithelial neoplasia by multimodal colposcopy. , 2016, , .		0
48	Comment on "Label-Free Single Exosome Detection Using Frequency Locked Microtoroid Optical Resonators― ACS Photonics, 2016, 3, 716-717.	6.6	1
49	Preliminary fsLIBS study on bone tumors. Biomedical Optics Express, 2015, 6, 4850.	2.9	3
50	Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. Journal of Extracellular Vesicles, 2015, 4, 28533.	12.2	240
51	Smart and Fast Blood Counting of Trace Volumes of Body Fluids from Various Mammalian Species Using a Compact, Custom-Built Microscope Cytometer. Analytical Chemistry, 2015, 87, 11854-11862.	6.5	17
52	3D plasmonic nanobowl platform for the study of exosomes in solution. Nanoscale, 2015, 7, 9290-9297.	5.6	138
53	Development of inexpensive blood imaging systems: where are we now?. Expert Review of Medical Devices, 2015, 12, 613-627.	2.8	7
54	Image reconstruction for structured-illumination microscopy with low signal level. Optics Express, 2014, 22, 8687.	3.4	65

#	Article	IF	CITATIONS
55	Long term Raman spectral study of power-dependent photodamage in red blood cells. Applied Physics Letters, 2014, 104, .	3.3	17
56	Single-step preparation and image-based counting of minute volumes of human blood. Lab on A Chip, 2014, 14, 3029.	6.0	38
57	Characterization of Femtosecond Laser-Induced Breakdown Spectroscopy (fsLIBS) and Applications for Biological Samples. Applied Spectroscopy, 2014, 68, 949-954.	2.2	15
58	Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by comparative Raman spectroscopy and gas chromatography. Analyst, The, 2013, 138, 6662.	3.5	54
59	Precise Monitoring of Chemical Changes through Localization Analysis of Dynamic Spectra (LADS). Applied Spectroscopy, 2013, 67, 187-195.	2.2	4
60	Super-resolved spatial light interference microscopy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 344.	1.5	5
61	Modern Trends in Imaging VI: Raman Scattering in Pathology. Analytical Cellular Pathology, 2012, 35, 145-163.	1.4	16
62	Nanometer-Scale Sizing Accuracy of Particle Suspensions on an Unmodified Cell Phone Using Elastic Light Scattering. PLoS ONE, 2012, 7, e46030.	2.5	17
63	Raman scattering in pathology. Analytical Cellular Pathology, 2012, 35, 145-63.	1.4	7
64	In-plane rotation classification for coherent X-ray imaging of single biomolecules. Optics Express, 2011, 19, 11691.	3.4	1
65	Multivariate optical computing using a digital micromirror device for fluorescence and Raman spectroscopy. Optics Express, 2011, 19, 16950.	3.4	20
66	Time-Gated Raman Spectra of Living Samples. , 2011, , .		0
67	Cell-Phone-Based Platform for Biomedical Device Development and Education Applications. PLoS ONE, 2011, 6, e17150.	2.5	301
68	Rejection of Fluorescence Background in Resonance and Spontaneous Raman Microspectroscopy. Journal of Visualized Experiments, 2011, , .	0.3	1
69	Microscopy and Spectroscopy on a Cell Phone. , 2011, , .		1
70	Multivariate Optical Computing for Biological Samples using a Digital Micromirror Device. , $2011, \dots$		0
71	Integrated Raman and angular scattering microscopy reveals chemical and morphological differences between activated and nonactivated CD8+ T lymphocytes. Journal of Biomedical Optics, 2010, 15, 036021.	2.6	21
72	Development of a time-gated system for Raman spectroscopy of biological samples. Optics Express, 2010, 18, 20049.	3.4	47

#	Article	IF	CITATIONS
73	Construction of an integrated Raman- and angular-scattering microscope. Review of Scientific Instruments, 2009, 80, 044302.	1.3	11
74	Validation of an integrated Raman- and angular-scattering microscopy system on heterogeneous bead mixtures and single human immune cells. Applied Optics, 2009, 48, D109.	2.1	38
75	Integrated Raman- and angular-scattering microscopy. Optics Letters, 2008, 33, 714.	3.3	35
76	Integrated Raman and angular scattering microscopy (IRAM)., 2008,,.		0
77	Studying Single Cells Using Integrated Raman and Angular-Scattering Microscopy. , 2008, , .		0
78	Integrated Raman and Angular-scatter Microscopy (IRAM)., 2008,,.		0
79	Raman Spectroscopy of Single PDT Treated Cells. , 2006, , .		O
80	New Twists and Turns for Confocal Raman Microscopy. , 2006, , .		0
81	Surface-sensitive polarized Raman spectroscopy of biological tissue. Optics Letters, 2005, 30, 1363.	3.3	22
82	Asymmetrical Illumination Enables Lipid Droplets Segmentation in Caenorhabditis elegans Using Epi-Illumination Dark Field Microscopy. Frontiers in Physics, 0, 10, .	2.1	0