José J Lopez-Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6198138/publications.pdf Version: 2024-02-01

		22099	38300
231	11,294	59	95
papers	citations	h-index	g-index
235	235	235	3876
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Removal of straylight from ExoMars NOMAD-UVIS observations. Planetary and Space Science, 2022, 218, 105432.	0.9	3
2	Calibration of NOMAD on ExoMars Trace Gas Orbiter: Part 3 - LNO validation and instrument stability. Planetary and Space Science, 2022, 218, 105399.	0.9	4
3	Calibration of NOMAD on ESA's ExoMars Trace Gas Orbiter: Part 1 – The Solar Occultation channel. Planetary and Space Science, 2022, 218, 105411.	0.9	8
4	Vertical Aerosol Distribution and Mesospheric Clouds From ExoMars UVIS. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	6
5	Martian CO ₂ Ice Observation at High Spectral Resolution With ExoMars/TGO NOMAD. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	5
6	Calibration of the NOMAD-UVIS data. Planetary and Space Science, 2022, 218, 105504.	0.9	5
7	Variations in Vertical CO/CO ₂ Profiles in the Martian Mesosphere and Lower Thermosphere Measured by the ExoMars TGO/NOMAD: Implications of Variations in Eddy Diffusion Coefficient. Geophysical Research Letters, 2022, 49, .	1.5	7
8	Density and Temperature of the Upper Mesosphere and Lower Thermosphere of Mars Retrieved From the OI 557.7Ânm Dayglow Measured by TGO/NOMAD. Journal of Geophysical Research E: Planets, 2022, 127,	1.5	6
9	The Mars Oxygen Visible Dayglow: A Martian Year of NOMAD/UVIS Observations. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	2
10	Planetâ€Wide Ozone Destruction in the Middle Atmosphere on Mars During Global Dust Storm. Geophysical Research Letters, 2022, 49, .	1.5	7
11	Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD. Icarus, 2021, 357, 114266.	1.1	27
12	Machine learning for automatic identification of new minor species. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 259, 107361.	1.1	2
13	Transient HCl in the atmosphere of Mars. Science Advances, 2021, 7, .	4.7	37
14	Water heavily fractionated as it ascends on Mars as revealed by ExoMars/NOMAD. Science Advances, 2021, 7, .	4.7	31
15	First Observation of the Oxygen 630Ânm Emission in the Martian Dayglow. Geophysical Research Letters, 2021, 48, e2020GL092334.	1.5	8
16	Probing the Atmospheric Cl Isotopic Ratio on Mars: Implications for Planetary Evolution and Atmospheric Chemistry. Geophysical Research Letters, 2021, 48, e2021GL092650.	1.5	7
17	Annual Appearance of Hydrogen Chloride on Mars and a Striking Similarity With the Water Vapor Vertical Distribution Observed by TGO/NOMAD. Geophysical Research Letters, 2021, 48, e2021GL092506.	1.5	15
18	The climatology of carbon monoxide on Mars as observed by NOMAD nadir-geometry observations. Icarus, 2021, 362, 114404.	1.1	11

#	Article	IF	CITATIONS
19	Martian water loss to space enhanced by regional dust storms. Nature Astronomy, 2021, 5, 1036-1042.	4.2	40
20	ExoMars TGO/NOMADâ€UVIS Vertical Profiles of Ozone: 2. The Highâ€Altitude Layers of Atmospheric Ozone. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006834.	1.5	14
21	A Global and Seasonal Perspective of Martian Water Vapor From ExoMars/NOMAD. Journal of Geophysical Research E: Planets, 2021, 126, .	1.5	8
22	ExoMars TGO/NOMADâ€UVIS Vertical Profiles of Ozone: 1. Seasonal Variation and Comparison to Water. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006837.	1.5	18
23	First Detection and Thermal Characterization of Terminator CO ₂ Ice Clouds With ExoMars/NOMAD. Geophysical Research Letters, 2021, 48, .	1.5	12
24	Calibration of NOMAD on ESA's ExoMars Trace Gas Orbiter: Part 2 – The Limb, Nadir and Occultation (LNO) channel. Planetary and Space Science, 2021, , 105410.	0.9	3
25	Strong Variability of Martian Water Ice Clouds During Dust Storms Revealed From ExoMars Trace Gas Orbiter/NOMAD. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006250.	1.5	39
26	Detection of green line emission in the dayside atmosphere of Mars from NOMAD-TGO observations. Nature Astronomy, 2020, 4, 1049-1052.	4.2	13
27	Multidisciplinary analysis of the Hapi region located on Comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2139-2154.	1.6	9
28	No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 2019, 568, 517-520.	13.7	111
29	Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 2019, 568, 521-525.	13.7	107
30	Bilobate comet morphology and internal structure controlled by shear deformation. Nature Geoscience, 2019, 12, 157-162.	5.4	22
31	Surface evolution of the Anhur region on comet 67P/Churyumov-Gerasimenko from high-resolution OSIRIS images. Astronomy and Astrophysics, 2019, 630, A13.	2.1	15
32	Linking surface morphology, composition, and activity on the nucleus of 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A7.	2.1	18
33	Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD. Journal of Geophysical Research E: Planets, 2019, 124, 3482-3497.	1.5	88
34	Methane on Mars: New insights into the sensitivity of CH4 with the NOMAD/ExoMars spectrometer through its first in-flight calibration. Icarus, 2019, 321, 671-690.	1.1	32
35	Aerosols: The key to understanding Titan's lower ionosphere. Planetary and Space Science, 2018, 153, 157-162.	0.9	6
36	Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	3.7	13

#	Article	IF	CITATIONS
37	The phase function and density of the dust observed at comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2835-2839.	1.6	20
38	On deviations from free-radial outflow in the inner coma of comet 67P/Churyumov–Gerasimenko. Icarus, 2018, 311, 1-22.	1.1	21
39	Meter-scale thermal contraction crack polygons on the nucleus of comet 67P/Churyumov-Gerasimenko. Icarus, 2018, 301, 173-188.	1.1	33
40	GIADA performance during Rosetta mission scientific operations at comet 67P. Advances in Space Research, 2018, 62, 1987-1997.	1.2	5
41	Models of Rosetta/OSIRIS 67P Dust Coma Phase Function. Astronomical Journal, 2018, 156, 237.	1.9	20
42	Tensile strength of 67P/Churyumov-Gerasimenko nucleus material from overhangs (<i>Corrigendum</i>). Astronomy and Astrophysics, 2018, 614, C2.	2.1	0
43	NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance. Space Science Reviews, 2018, 214, 1.	3.7	95
44	Tensile strength of 67P/Churyumov–Gerasimenko nucleus material from overhangs. Astronomy and Astrophysics, 2018, 611, A33.	2.1	40
45	Coma morphology of comet 67P controlled by insolation over irregular nucleus. Nature Astronomy, 2018, 2, 562-567.	4.2	19
46	Regional unit definition for the nucleus of comet 67P/Churyumov-Gerasimenko on the SHAP7 model. Planetary and Space Science, 2018, 164, 19-36.	0.9	32
47	Exposed bright features on the comet 67P/Churyumov–Gerasimenko: distribution and evolution. Astronomy and Astrophysics, 2018, 613, A36.	2.1	15
48	The big lobe of 67P/Churyumov–Gerasimenko comet: morphological and spectrophotometric evidences of layering as from OSIRIS data. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1555-1568.	1.6	7
49	Atomistic and infrared study of CO-water amorphous ice onto olivine dust grain. Planetary and Space Science, 2017, 135, 17-26.	0.9	9
50	Opposition effect on comet 67P/Churyumov-Gerasimenko using Rosetta-OSIRIS images. Astronomy and Astrophysics, 2017, 599, A11.	2.1	11
51	Multivariate statistical analysis of OSIRIS/Rosetta spectrophotometric data of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 600, A115.	2.1	11
52	Distance determination method of dust particles using Rosetta OSIRIS NAC and WAC data. Planetary and Space Science, 2017, 143, 256-264.	0.9	8
53	Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images: The southern hemisphere (Corrigendum). Astronomy and Astrophysics, 2017, 598, C2.	2.1	8
54	The 67P/Churyumov–Gerasimenko observation campaign in support of the Rosetta mission. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160249.	1.6	29

#	Article	IF	CITATIONS
55	Surface changes on comet 67P/Churyumov-Gerasimenko suggest a more active past. Science, 2017, 355, 1392-1395.	6.0	63
56	The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse. Nature Astronomy, 2017, 1, .	4.2	100
57	The opposition effect of 67P/Churyumov–Gerasimenko on post-perihelion Rosetta images. Monthly Notices of the Royal Astronomical Society, 2017, 469, S550-S567.	1.6	22
58	Long-term monitoring of comet 67P/Churyumov–Gerasimenko's jets with OSIRIS onboard Rosetta. Monthly Notices of the Royal Astronomical Society, 2017, 469, S380-S385.	1.6	13
59	Seasonal erosion and restoration of the dust cover on comet 67P/Churyumov-Gerasimenko as observed by OSIRIS onboard Rosetta. Astronomy and Astrophysics, 2017, 604, A114.	2.1	43
60	Modelling of the outburst on 2015 July 29 observed with OSIRIS cameras in the Southern hemisphere of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S178-S185.	1.6	12
61	Constraints on cometary surface evolution derived from a statistical analysis of 67P's topography. Monthly Notices of the Royal Astronomical Society, 2017, 469, S329-S338.	1.6	33
62	The scattering phase function of comet 67P/Churyumov–Gerasimenko coma as seen from the Rosetta/OSIRIS instrument. Monthly Notices of the Royal Astronomical Society, 2017, 469, S404-S415.	1.6	44
63	Seasonal mass transfer on the nucleus of comet 67P/Chuyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S357-S371.	1.6	111
64	Dust mass distribution around comet 67P/Churyumov–Gerasimenko determined via parallax measurements using Rosetta's OSIRIS cameras. Monthly Notices of the Royal Astronomical Society, 2017, 469, S276-S284.	1.6	43
65	The highly active Anhur–Bes regions in the 67P/Churyumov–Gerasimenko comet: results from OSIRIS/ROSETTA observations. Monthly Notices of the Royal Astronomical Society, 2017, 469, S93-S107.	1.6	30
66	Thermal modelling of water activity on comet 67P/Churyumov-Gerasimenko with global dust mantle and plural dust-to-ice ratio. Monthly Notices of the Royal Astronomical Society, 2017, 469, S295-S311.	1.6	39
67	Characterization of dust aggregates in the vicinity of the Rosetta spacecraft. Monthly Notices of the Royal Astronomical Society, 2017, 469, S312-S320.	1.6	12
68	Geomorphological and spectrophotometric analysis of Seth's circular niches on comet 67P/Churyumov–Gerasimenko using OSIRIS images. Monthly Notices of the Royal Astronomical Society, 2017, 469, S238-S251.	1.6	8
69	Evidence of sub-surface energy storage in comet 67P from the outburst of 2016 July 03. Monthly Notices of the Royal Astronomical Society, 2017, 469, s606-s625.	1.6	45
70	The pebbles/boulders size distributions on Sais: Rosetta's final landing site on comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S636-S645.	1.6	40
71	Investigating the physical properties of outbursts on comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S731-S740.	1.6	23
72	A three-dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S741-S754.	1.6	22

#	Article	IF	CITATIONS
73	Post-perihelion photometry of dust grains in the coma of 67P Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S195-S203.	1.6	17
74	NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 2—design, manufacturing, and testing of the ultraviolet and visible channel. Applied Optics, 2017, 56, 2771.	2.1	40
75	Thermophysics of fractures on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 608, A121.	2.1	7
76	The global meter-level shape model of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 607, L1.	2.1	107
77	Long-term survival of surface water ice on comet 67P. Monthly Notices of the Royal Astronomical Society, 2017, 469, S582-S597.	1.6	24
78	Acceleration of individual, decimetre-sized aggregates in the lower coma of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S78-S88.	1.6	52
79	Geologic mapping of the Comet 67P/Churyumov–Gerasimenko's Northern hemisphere. Monthly Notices of the Royal Astronomical Society, 2016, 462, S352-S367.	1.6	27
80	The southern hemisphere of 67P/Churyumov-Gerasimenko: Analysis of the preperihelion size-frequency distribution of boulders ≥7 m. Astronomy and Astrophysics, 2016, 592, L2.	2.1	27
81	Sunset jets observed on comet 67P/Churyumov-Gerasimenko sustained by subsurface thermal lag. Astronomy and Astrophysics, 2016, 586, A7.	2.1	55
82	Characterization of the Abydos region through OSIRIS high-resolution images in support of CIVA measurements. Astronomy and Astrophysics, 2016, 585, L1.	2.1	26
83	Gas outflow and dust transport of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S533-S546.	1.6	34
84	Sublimation of icy aggregates in the coma of comet 67P/Churyumov–Gerasimenko detected with the OSIRIS cameras on board <i>Rosetta</i> . Monthly Notices of the Royal Astronomical Society, 2016, 462, S57-S66.	1.6	23
85	Summer fireworks on comet 67P. Monthly Notices of the Royal Astronomical Society, 2016, 462, S184-S194.	1.6	112
86	Are fractured cliffs the source of cometary dust jets? Insights from OSIRIS/Rosetta at 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 587, A14.	2.1	102
87	Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images: The southern hemisphere. Astronomy and Astrophysics, 2016, 593, A110.	2.1	86
88	Detection of exposed H ₂ O ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 595, A102.	2.1	67
89	Comparative study of water ice exposures on cometary nuclei using multispectral imaging data. Monthly Notices of the Royal Astronomical Society, 2016, 462, S394-S414.	1.6	18
90	The dust environment of comet 67P/Churyumov-Gerasimenko from Rosetta OSIRIS and VLT observations in the 4.5 to 2.9 AU heliocentric distance range inbound. Astronomy and Astrophysics, 2016, 587, A155.	2.1	39

José J Lopez-Moreno

#	Article	IF	CITATIONS
91	Possible interpretation of the precession of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 590, A46.	2.1	14
92	A mini outburst from the nightside of comet 67P/Churyumov-Gerasimenko observed by the OSIRIS camera on Rosetta. Astronomy and Astrophysics, 2016, 596, A89.	2.1	29
93	67P/C-G inner coma dust properties from 2.2 au inbound to 2.0 au outbound to the Sun. Monthly Notices of the Royal Astronomical Society, 2016, 462, S210-S219.	1.6	46
94	Aswan site on comet 67P/Churyumov-Gerasimenko: Morphology, boulder evolution, and spectrophotometry. Astronomy and Astrophysics, 2016, 592, A69.	2.1	53
95	Observations and analysis of a curved jet in the coma of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 588, L3.	2.1	34
96	Photometry of dust grains of comet 67P and connection with nucleus regions. Astronomy and Astrophysics, 2016, 588, A59.	2.1	10
97	The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations. Icarus, 2016, 277, 257-278.	1.1	252
98	EVOLUTION OF THE DUST SIZE DISTRIBUTION OF COMET 67P/CHURYUMOV–GERASIMENKO FROM 2.2 au TO PERIHELION. Astrophysical Journal, 2016, 821, 19.	1.6	158
99	GIADA – Grain Impact Analyzer and Dust Accumulator – Onboard Rosetta spacecraft: Extended calibrations. Acta Astronautica, 2016, 126, 205-214.	1.7	19
100	Spectrophotometry of the Khonsu region on the comet 67P/Churyumov–Gerasimenko using OSIRIS instrument images. Monthly Notices of the Royal Astronomical Society, 2016, 462, S274-S286.	1.6	20
101	The 2016 Feb 19 outburst of comet 67P/CG: an ESA Rosetta multi-instrument study. Monthly Notices of the Royal Astronomical Society, 2016, 462, S220-S234.	1.6	60
102	Optical and radiometric models of the NOMAD instrument part II: the infrared channels - SO and LNO. Optics Express, 2016, 24, 3790.	1.7	25
103	Physical properties and dynamical relation of the circular depressions on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 591, A132.	2.1	22
104	Decimetre-scaled spectrophotometric properties of the nucleus of comet 67P/Churyumov–Gerasimenko from OSIRIS observations. Monthly Notices of the Royal Astronomical Society, 2016, 462, S287-S303.	1.6	26
105	Comet 67P/Churyumov–Gerasimenko preserved the pebbles that formed planetesimals. Monthly Notices of the Royal Astronomical Society, 2016, 462, S132-S137.	1.6	111
106	Rosetta's comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature. Science, 2016, 354, 1566-1570.	6.0	97
107	CHANGES IN THE PHYSICAL ENVIRONMENT OF THE INNER COMA OF 67P/CHURYUMOV–GERASIMENKO WITH DECREASING HELIOCENTRIC DISTANCE. Astronomical Journal, 2016, 152, 130.	1.9	36
108	The Agilkia boulders/pebbles size–frequency distributions: OSIRIS and ROLIS joint observations of 67P surface. Monthly Notices of the Royal Astronomical Society, 2016, 462, S242-S252.	1.6	15

#	Article	IF	CITATIONS
109	Geomorphological mapping of comet 67P/Churyumov–Gerasimenko's Southern hemisphere. Monthly Notices of the Royal Astronomical Society, 2016, 462, S573-S592.	1.6	23
110	The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 592, A63.	2.1	159
111	SINBAD electronic models of the interface and control system for the NOMAD spectrometer on board of ESA ExoMars Trace Gas Orbiter mission. Proceedings of SPIE, 2016, , .	0.8	0
112	The electrical properties of Titan's surface at the Huygens landing site measured with the PWA–HASI Mutual Impedance Probe. New approach and new findings. Icarus, 2016, 270, 272-290.	1.1	11
113	Expected performances of the NOMAD/ExoMars instrument. Planetary and Space Science, 2016, 124, 94-104.	0.9	31
114	Variegation of comet 67P/Churyumov-Gerasimenko in regions showing activity. Astronomy and Astrophysics, 2016, 586, A80.	2.1	43
115	SINBAD flight software, the on-board software of NOMAD in ExoMars 2016. Proceedings of SPIE, 2016, ,	0.8	Ο
116	Optical and radiometric models of the NOMAD instrument part I: the UVIS channel. Optics Express, 2015, 23, 30028.	1.7	26
117	Scientific assessment of the quality of OSIRIS images. Astronomy and Astrophysics, 2015, 583, A46.	2.1	67
118	Characterization of OSIRIS NAC filters for the interpretation of multispectral data of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A45.	2.1	8
119	Shape model, reference system definition, and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko – Stereo-photogrammetric analysis of Rosetta/OSIRIS image data. Astronomy and Astrophysics, 2015, 583, A33.	2.1	188
120	Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A32.	2.1	113
121	GIADA: shining a light on the monitoring of the comet dust production from the nucleus of 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A13.	2.1	87
122	OSIRIS observations of meter-sized exposures of H ₂ O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments. Astronomy and Astrophysics, 2015, 583, A25.	2.1	97
123	Redistribution of particles across the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A17.	2.1	149
124	Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A34.	2.1	173
125	Morphology and dynamics of the jets of comet 67P/Churyumov-Gerasimenko: Early-phase development. Astronomy and Astrophysics, 2015, 583, A11.	2.1	33
126	67P/Churyumov-Gerasimenko: Activity between March and June 2014 as observed from Rosetta/OSIRIS. Astronomy and Astrophysics, 2015, 573, A62.	2.1	60

#	Article	IF	CITATIONS
127	Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft. Astronomy and Astrophysics, 2015, 583, A30.	2.1	188
128	Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images. Astronomy and Astrophysics, 2015, 583, A26.	2.1	153
129	Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A35.	2.1	59
130	Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A37.	2.1	108
131	Geomorphology and spectrophotometry of Philae's landing site on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A41.	2.1	41
132	Comet 67P/Churyumov-Gerasimenko: Constraints on its origin from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A44.	2.1	53
133	Temporal morphological changes in the Imhotep region of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A36.	2.1	60
134	Large-scale dust jets in the coma of 67P/Churyumov-Gerasimenko as seen by the OSIRIS instrument onboard Rosetta. Astronomy and Astrophysics, 2015, 583, A9.	2.1	39
135	Fractures on comet 67P/Churyumovâ€Gerasimenko observed by Rosetta/OSIRIS. Geophysical Research Letters, 2015, 42, 5170-5178.	1.5	71
136	Orbital elements of the material surrounding comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A16.	2.1	23
137	Rotating dust particles in the coma of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A14.	2.1	26
138	Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun. Science, 2015, 347, aaa3905.	6.0	310
139	On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa1044.	6.0	366
140	The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa0440.	6.0	259
141	Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse. Nature, 2015, 523, 63-66.	13.7	158
142	DENSITY AND CHARGE OF PRISTINE FLUFFY PARTICLES FROM COMET 67P/CHURYUMOV–GERASIMENKO. Astrophysical Journal Letters, 2015, 802, L12.	3.0	130
143	NOMAD spectrometer on the ExoMars trace gas orbiter mission: part 1—design, manufacturing and testing of the infrared channels. Applied Optics, 2015, 54, 8494.	2.1	58
144	Two independent and primitive envelopes of the bilobate nucleus of comet 67P. Nature, 2015, 526, 402-405.	13.7	141

#	Article	IF	CITATIONS
145	Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planetary and Space Science, 2015, 119, 233-249.	0.9	77
146	Search for satellites near comet 67P/Churyumov-Gerasimenko using Rosetta/OSIRIS images. Astronomy and Astrophysics, 2015, 583, A19.	2.1	13
147	Dust environment and dynamical history of a sample of short-period comets. Astronomy and Astrophysics, 2014, 568, A3.	2.1	9
148	Dust environment and dynamical history of a sample of short-period comets. Astronomy and Astrophysics, 2014, 571, A64.	2.1	13
149	GIADA: ITS STATUS AFTER THE ROSETTA CRUISE PHASE AND ON-GROUND ACTIVITY IN SUPPORT OF THE ENCOUNTER WITH COMET 67P/CHURYUMOV-GERASIMENKO. Journal of Astronomical Instrumentation, 2014, 03, .	0.8	31
150	ON THE DUST ENVIRONMENT OF COMET C/2012 S1 (ISON) FROM 12 AU PRE-PERIHELION TO THE END OF ITS ACTIVITY AROUND PERIHELION. Astrophysical Journal, 2014, 791, 118.	1.6	13
151	The rotation state of 67P/Churyumov-Gerasimenko from approach observations with the OSIRIS cameras on Rosetta. Astronomy and Astrophysics, 2014, 569, L2.	2.1	81
152	Comment on "An analysis of VLF electric field spectra measured in Titan's atmosphere by the Huygens probe―by J. A. Morente et al Journal of Geophysical Research, 2011, 116, .	3.3	2
153	Images of Asteroid 21 Lutetia: A Remnant Planetesimal from the Early Solar System. Science, 2011, 334, 487-490.	6.0	179
154	Comet 67P/Churyumov-Gerasimenko: the GIADA dust environment model of the Rosetta mission target. Astronomy and Astrophysics, 2010, 522, A63.	2.1	78
155	A new approach for estimating Titan's electron conductivity based on data from relaxation probe sensors on the Huygens experiment. Planetary and Space Science, 2010, 58, 1945-1952.	0.9	8
156	A collision in 2009 as the origin of the debris trail of asteroid P/2010 A2. Nature, 2010, 467, 814-816.	13.7	94
157	E-Type Asteroid (2867) Steins as Imaged by OSIRIS on Board Rosetta. Science, 2010, 327, 190-193.	6.0	120
158	ESSC-ESF Position Paper—Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC). Astrobiology, 2009, 9, 23-41.	1.5	13
159	European Venus Explorer (EVE): an in-situ mission to Venus. Experimental Astronomy, 2009, 23, 741-760.	1.6	9
160	TandEM: Titan and Enceladus mission. Experimental Astronomy, 2009, 23, 893-946.	1.6	77
161	Triple F—a comet nucleus sample return mission. Experimental Astronomy, 2009, 23, 809-847.	1.6	14
162	Comment on "Evidence of electrical activity on Titan drawn from the Schumann resonances sent by Huygens probe―by J.A. Morente, J.A. PortÃ, A. Salinas, E.A. Navarro [2008, Icarus, 195, 802–811]. Icarus, 2009, 204, 349-351.	1.1	5

#	Article	IF	CITATIONS
163	MEDUSA: The ExoMars experiment for in-situ monitoring of dust and water vapour. Planetary and Space Science, 2009, 57, 1043-1049.	0.9	17
164	European Venus Explorer: An in-situ mission to Venus using a balloon platform. Advances in Space Research, 2009, 44, 106-115.	1.2	16
165	Meteoric Layers in Planetary Atmospheres. Space Science Reviews, 2008, 137, 175-191.	3.7	32
166	The Schumann resonance: A tool for exploring the atmospheric environment and the subsurface of the planets and their satellites. Icarus, 2008, 194, 30-41.	1.1	27
167	Electromagnetic wave propagation in the surfaceâ€ionosphere cavity of Venus. Journal of Geophysical Research, 2008, 113, .	3.3	17
168	Structure of Titan's low altitude ionized layer from the Relaxation Probe onboard HUYGENS. Geophysical Research Letters, 2008, 35, .	1.5	55
169	Observations of Comet 9P/Tempel 1 around the Deep Impact event by the OSIRIS cameras onboard Rosetta. Icarus, 2007, 191, 241-257.	1.1	12
170	The BepiColombo Laser Altimeter (BELA): Concept and baseline design. Planetary and Space Science, 2007, 55, 1398-1413.	0.9	80
171	Electron conductivity and density profiles derived from the mutual impedance probe measurements performed during the descent of Huygens through the atmosphere of Titan. Planetary and Space Science, 2007, 55, 1964-1977.	0.9	54
172	A new numerical model for the simulation of ELF wave propagation and the computation of eigenmodes in the atmosphere of Titan: Did Huygens observe any Schumann resonance?. Planetary and Space Science, 2007, 55, 1978-1989.	0.9	44
173	The Grain Impact Analyser and Dust Accumulator (GIADA) Experiment for the Rosetta Mission: Design, Performances and First Results. Space Science Reviews, 2007, 128, 803-821.	3.7	76
174	OSIRIS – The Scientific Camera System Onboard Rosetta. Space Science Reviews, 2007, 128, 433-506.	3.7	286
175	Observations of Comet 9P/Tempel 1 around the Deep Impact event by the OSIRIS cameras onboard Rosetta. Icarus, 2007, 187, 87-103.	1.1	27
176	A Schumann-like resonance on Titan driven by Saturn's magnetosphere possibly revealed by the Huygens Probe. Icarus, 2007, 191, 251-266.	1.1	45
177	GIADA: The Grain Impact Analyser and Dust Accumulator for the Rosetta space mission. Advances in Space Research, 2007, 39, 446-450.	1.2	26
178	The planetary fourier spectrometer (PFS) onboard the European Venus Express mission. Planetary and Space Science, 2006, 54, 1298-1314.	0.9	39
179	Electric properties and related physical characteristics of the atmosphere and surface of Titan. Planetary and Space Science, 2006, 54, 1124-1136.	0.9	49
180	The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express mission. Planetary and Space Science, 2005, 53, 963-974.	0.9	151

#	Article	IF	CITATIONS
181	Analysis of non-LTE emissions at in the Martian atmosphere as observed by PFS/Mars Express and SWS/ISO. Planetary and Space Science, 2005, 53, 1079-1087.	0.9	35
182	A large dust/ice ratio in the nucleus of comet 9P/Tempel 1. Nature, 2005, 437, 987-990.	13.7	141
183	In situ measurements of the physical characteristics of Titan's environment. Nature, 2005, 438, 785-791.	13.7	620
184	Seasonal variations of O ₂ atmospheric and OH(6â^'2) airglowand temperature at mid-latitudes from SATI observations. Annales Geophysicae, 2004, 22, 819-828.	0.6	33
185	Dust in Comet 67P/Churyumovâ€Gerasimenko. Astrophysical Journal, 2004, 613, 1263-1269.	1.6	34
186	Meteoric ions in the atmosphere of Mars. Planetary and Space Science, 2003, 51, 239-249.	0.9	67
187	Nitriles produced by ion chemistry in the lower ionosphere of Titan. Journal of Geophysical Research, 2002, 107, 9-1-9-11.	3.3	22
188	Ion-neutral chemistry model of the lower ionosphere of Mars. Journal of Geophysical Research, 2002, 107, 3-1.	3.3	51
189	A Monte Carlo Code to Compute Energy Fluxes in Cometary Nuclei. Icarus, 2002, 156, 474-484.	1.1	20
190	The CH4 Density in the Upper Atmosphere of Titan. Icarus, 2002, 158, 191-198.	1.1	12
191	The grain detection system for the GIADA instrument: design and expected performances. Advances in Space Research, 2002, 29, 1165-1169.	1.2	16
192	The Comas sola mission to test the HUYGENS/HASI instrument on board a stratospheric balloon. Advances in Space Research, 2002, 30, 1359-1364.	1.2	9
193	Evolution of the Rotational State of Irregular Cometary Nuclei. Earth, Moon and Planets, 2002, 90, 239-247.	0.3	13
194	Title is missing!. Space Science Reviews, 2002, 104, 395-431.	3.7	64
195	A model of the martian ionosphere below 70 km. Advances in Space Research, 2001, 27, 1801-1806.	1.2	27
196	Propagation of electromagnetic waves in the lower ionosphere of Titan. Advances in Space Research, 2001, 28, 1505-1510.	1.2	12
197	Capability of the Cassini/Huygens PWA-HASI to measure electrical conductivity in Titan. Advances in Space Research, 2001, 28, 1511-1516.	1.2	14
198	Ionospheric layer induced by meteoric ionization in Titan's atmosphere. Planetary and Space Science, 2001, 49, 143-153.	0.9	83

#	Article	IF	CITATIONS
199	Spectrum of the Extreme Ultraviolet Nightglow as Measured by EURD. Astrophysics and Space Science, 2001, 276, 211-217.	0.5	2
200	Spectrum of the Extreme Ultraviolet Nightglow as Measured by EURD. , 2001, , 211-217.		1
201	A Coupled Model of Titan's Atmosphere and Ionosphere. Icarus, 2000, 147, 386-404.	1.1	124
202	The upper atmosphere and ionosphere of Titan: A coupled model. Advances in Space Research, 2000, 26, 1547-1550.	1.2	7
203	Surface and sub-surface electrical measurement of titan with the PWA-HASI experiment on HUYGENS. Advances in Space Research, 2000, 26, 1697-1704.	1.2	11
204	Influence of electrophilic species on the lower ionosphere of Titan. Geophysical Research Letters, 2000, 27, 1351-1354.	1.5	21
205	Ionization by cosmic rays of the atmosphere of Titan. Planetary and Space Science, 1999, 47, 1347-1354.	0.9	93
206	Osiris—The optical, spectroscopic and infrared remote imaging system for the Rosetta Orbiter. Advances in Space Research, 1998, 21, 1505-1515.	1.2	23
207	EURD observations of EUV nightime airglow lines. Geophysical Research Letters, 1998, 25, 2937-2940.	1.5	15
208	SATI: A spectral airglow temperature imager. Advances in Space Research, 1997, 19, 677-680.	1.2	40
209	PFS: A fourier spectrometer for the study of Martian atmosphere. Advances in Space Research, 1997, 19, 1277-1280.	1.2	28
210	A model study of the temporal behaviour of the emission intensity and rotational temperature of the OH Meinel bands for high-latitude summer conditions. Annales Geophysicae, 1996, 14, 59-67.	0.6	3
211	Infrared spectrometer PFS for the Mars 94 orbiter. Advances in Space Research, 1996, 17, 61-64.	1.2	15
212	The Planetary Fourier Spectrometer (PFS) for the orbiter of the spacecraft Mars 96. Planetary and Space Science, 1996, 44, 889-897.	0.9	23
213	Physical properties of the aerosol debris generated by the impact of fragment H of comet P/Shoemaker-Levy 9 on Jupiter. Geophysical Research Letters, 1995, 22, 1609-1612.	1.5	18
214	Atmospheric composition during twilight. Advances in Space Research, 1993, 13, 339-342.	1.2	1
215	Planetary Fourier spectrometer: An interferometer for atmospheric studies on board Mars 94 mission. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1993, 16, 575-588.	0.2	4
216	The altitude profile of the infrared atmospheric system of O2 in twilight and early night: Derivation of ozone abundances. Planetary and Space Science, 1992, 40, 1391-1397.	0.9	11

#	Article	IF	CITATIONS
217	Altitude profiles of the atmospheric system of O2 and of the green line emission. Planetary and Space Science, 1992, 40, 783-795.	0.9	19
218	Atomic oxygen concentrations from airglow measurements of atomic and molecular oxygen emissions in the nightglow. Planetary and Space Science, 1992, 40, 929-940.	0.9	16
219	Altitude and vibrational distribution of the O2 ultraviolet nightglow emissions. Planetary and Space Science, 1992, 40, 913-928.	0.9	30
220	Variability of the neutral mesospheric and lower thermospheric composition in the diurnal cycle. Planetary and Space Science, 1991, 39, 803-820.	0.9	28
221	A nonsteady oneâ€dimensional theoretical model of Mars' neutral atmospheric composition between 30 and 200 km. Journal of Geophysical Research, 1990, 95, 14795-14810.	3.3	60
222	Atomic oxygen concentrations from OH and O2 nightglow measurements. Planetary and Space Science, 1989, 37, 49-60.	0.9	11
223	Behaviour of the O2 infrared atmospheric (0-0) band in the middle atmosphere during evening twilight and at night. Planetary and Space Science, 1989, 37, 61-72.	0.9	20
224	Rocket measurements of O2 infrared atmospheric system in the nightglow. Planetary and Space Science, 1988, 36, 459-467.	0.9	19
225	Altitude distribution of vibrationally excited states of atmospheric hydroxyl at levels $v = 2$ to $v = 7$. Planetary and Space Science, 1987, 35, 1029-1038.	0.9	71
226	Neutral atmospheric composition between 60 and 220 km: A theoretical model for mid-latitudes. Planetary and Space Science, 1986, 34, 723-743.	0.9	62
227	A non-LTE radiative transfer model for infrared bands in the middle atmosphere. II. CO2 (2.7 and 4.3 μm) and water vapour (6.3 μm) bands and N2(1) and O2(1) vibrational levels. Journal of Atmospheric and Solar-Terrestrial Physics, 1986, 48, 749-764.	0.9	60
228	Gravity waves from five simultaneous emissions: OH (6–2), NaD, O ₂ (¹ Σ), Ol–557.7â€,nm, and the visible continuum. Canadian Journal of Physics, 1985, 63, 592-599.	0.4	7
229	Analysis of OI-557.7 nm, NaD, OH(6-2) and nightglow emissions from ground-based observations. Journal of Atmospheric and Solar-Terrestrial Physics, 1985, 47, 1099-1110.	0.9	19
230	Time and altitude variations of vibrationally excited states of atmospheric hydroxyl. Planetary and Space Science, 1979, 27, 1421-1428.	0.9	18
231	The backscattering ratio of comet 67P/Churyumov-Gerasimenko dust coma as seen by OSIRIS onboard Rosetta. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	6