Tao Huan

List of Publications by Citations

Source: https://exaly.com/author-pdf/619803/tao-huan-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,092 22 45 g-index

79 2,868 7.9 2.36 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
65	METLIN: A Technology Platform for Identifying Knowns and Unknowns. <i>Analytical Chemistry</i> , 2018 , 90, 3156-3164	7.8	461
64	MyCompoundID: using an evidence-based metabolome library for metabolite identification. <i>Analytical Chemistry</i> , 2013 , 85, 3401-8	7.8	143
63	Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online. <i>Nature Protocols</i> , 2018 , 13, 633-651	18.8	141
62	Systems biology guided by XCMS Online metabolomics. <i>Nature Methods</i> , 2017 , 14, 461-462	21.6	120
61	IsoMS: automated processing of LC-MS data generated by a chemical isotope labeling metabolomics platform. <i>Analytical Chemistry</i> , 2014 , 86, 4675-9	7.8	86
60	Exposome-Scale Investigations Guided by Global Metabolomics, Pathway Analysis, and Cognitive Computing. <i>Analytical Chemistry</i> , 2017 , 89, 11505-11513	7.8	78
59	MyCompoundID MS/MS Search: Metabolite Identification Using a Library of Predicted Fragment-Ion-Spectra of 383,830 Possible Human Metabolites. <i>Analytical Chemistry</i> , 2015 , 87, 10619-20	5 ^{7.8}	78
58	DnsID in MyCompoundID for rapid identification of dansylated amine- and phenol-containing metabolites in LC-MS-based metabolomics. <i>Analytical Chemistry</i> , 2015 , 87, 9838-45	7.8	78
57	A Universal Gut-Microbiome-Derived Signature Predicts Cirrhosis. Cell Metabolism, 2020, 32, 878-888.ed	6 24.6	63
56	Counting missing values in a metabolite-intensity data set for measuring the analytical performance of a metabolomics platform. <i>Analytical Chemistry</i> , 2015 , 87, 1306-13	7.8	61
55	Glioma Stem Cell-Specific Superenhancer Promotes Polyunsaturated Fatty-Acid Synthesis to Support EGFR Signaling. <i>Cancer Discovery</i> , 2019 , 9, 1248-1267	24.4	60
54	Development of high-performance chemical isotope labeling LC-MS for profiling the human fecal metabolome. <i>Analytical Chemistry</i> , 2015 , 87, 829-36	7.8	58
53	Comparison of Full-Scan, Data-Dependent, and Data-Independent Acquisition Modes in Liquid Chromatography-Mass Spectrometry Based Untargeted Metabolomics. <i>Analytical Chemistry</i> , 2020 , 92, 8072-8080	7.8	57
52	Quantitative Metabolome Analysis Based on Chromatographic Peak Reconstruction in Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry. <i>Analytical Chemistry</i> , 2015 , 87, 7011-6	7.8	54
51	Metabolomics Reveals that Dietary Xenoestrogens Alter Cellular Metabolism Induced by Palbociclib/Letrozole Combination Cancer Therapy. <i>Cell Chemical Biology</i> , 2018 , 25, 291-300.e3	8.2	35
50	Metabolomics Analyses of Saliva Detect Novel Biomarkers of Alzheimer's Disease. <i>Journal of Alzheimers Disease</i> , 2018 , 65, 1401-1416	4.3	35
49	Rewiring AMPK and mitochondrial retrograde signaling for metabolic control of aging and histone acetylation in respiratory-defective cells. <i>Cell Reports</i> , 2014 , 7, 565-574	10.6	31

(2020-2016)

48	Metabolite Analysis and Histology on the Exact Same Tissue: Comprehensive Metabolomic Profiling and Metabolic Classification of Prostate Cancer. <i>Scientific Reports</i> , 2016 , 6, 32272	4.9	24
47	Dansylation isotope labeling liquid chromatography mass spectrometry for parallel profiling of human urinary and fecal submetabolomes. <i>Analytica Chimica Acta</i> , 2016 , 903, 100-9	6.6	24
46	Toxicity mechanisms of polystyrene microplastics in marine mussels revealed by high-coverage quantitative metabolomics using chemical isotope labeling liquid chromatography mass spectrometry. <i>Journal of Hazardous Materials</i> , 2021 , 417, 126003	12.8	24
45	Cariogenic Produces Tetramic Acid Strain-Specific Antibiotics That Impair Commensal Colonization. <i>ACS Infectious Diseases</i> , 2020 , 6, 563-571	5.5	23
44	Data Streaming for Metabolomics: Accelerating Data Processing and Analysis from Days to Minutes. <i>Analytical Chemistry</i> , 2017 , 89, 1254-1259	7.8	20
43	Chemical Isotope Labeling Exposome (CIL-EXPOSOME): One High-Throughput Platform for Human Urinary Global Exposome Characterization. <i>Environmental Science & Environmental Sci</i>	5 ^{30.3}	18
42	Enhancing Metabolome Coverage in Data-Dependent LC-MS/MS Analysis through an Integrated Feature Extraction Strategy. <i>Analytical Chemistry</i> , 2019 , 91, 14433-14441	7.8	18
41	Development of versatile isotopic labeling reagents for profiling the amine submetabolome by liquid chromatography-mass spectrometry. <i>Analytica Chimica Acta</i> , 2015 , 881, 107-16	6.6	17
40	Autonomous Multimodal Metabolomics Data Integration for Comprehensive Pathway Analysis and Systems Biology. <i>Analytical Chemistry</i> , 2018 , 90, 8396-8403	7.8	16
39	Dissemination and analysis of the quality assurance (QA) and quality control (QC) practices of LC-MS based untargeted metabolomics practitioners. <i>Metabolomics</i> , 2020 , 16, 113	4.7	16
38	Metabolomics-Based Discovery of Molecular Signatures for Triple Negative Breast Cancer in Asian Female Population. <i>Scientific Reports</i> , 2020 , 10, 370	4.9	15
37	High-Performance Chemical Isotope Labeling Liquid Chromatography-Mass Spectrometry for Profiling the Metabolomic Reprogramming Elicited by Ammonium Limitation in Yeast. <i>Journal of Proteome Research</i> , 2016 , 15, 1602-12	5.6	15
36	Retrieving and Utilizing Hypothetical Neutral Losses from Tandem Mass Spectra for Spectral Similarity Analysis and Unknown Metabolite Annotation. <i>Analytical Chemistry</i> , 2020 , 92, 14476-14483	7.8	15
35	Pass-back chain extension expands multimodular assembly line biosynthesis. <i>Nature Chemical Biology</i> , 2020 , 16, 42-49	11.7	14
34	Alzheimer's Biomarkers From Multiple Modalities Selectively Discriminate Clinical Status: Relative Importance of Salivary Metabolomics Panels, Genetic, Lifestyle, Cognitive, Functional Health and Demographic Risk Markers. <i>Frontiers in Aging Neuroscience</i> , 2018 , 10, 296	5.3	14
33	Smartphone Analytics: Mobilizing the Lab into the Cloud for Omic-Scale Analyses. <i>Analytical Chemistry</i> , 2016 , 88, 9753-9758	7.8	13
32	Evaluation of significant features discovered from different data acquisition modes in mass spectrometry-based untargeted metabolomics. <i>Analytica Chimica Acta</i> , 2020 , 1137, 37-46	6.6	13
31	Fold-Change Compression: An Unexplored But Correctable Quantitative Bias Caused by Nonlinear Electrospray Ionization Responses in Untargeted Metabolomics. <i>Analytical Chemistry</i> , 2020 , 92, 7011-70	179 ⁸	11

30	Risk-Based Chemical Ranking and Generating a Prioritized Human Exposome Database. Environmental Health Perspectives, 2021 , 129, 47014	8.4	11
29	CD44 Loss Disrupts Lung Lipid Surfactant Homeostasis and Exacerbates Oxidized Lipid-Induced Lung Inflammation. <i>Frontiers in Immunology</i> , 2020 , 11, 29	8.4	10
28	Fatty acid and sterol composition reveal food selectivity of juvenile ark shell Tegillarca granosa Linnaeus after feeding with mixed microalgae. <i>Aquaculture</i> , 2016 , 455, 109-117	4.4	8
27	DaDIA: Hybridizing Data-Dependent and Data-Independent Acquisition Modes for Generating High-Quality Metabolomic Data. <i>Analytical Chemistry</i> , 2021 , 93, 2669-2677	7.8	8
26	Streamlined MRM method transfer between instruments assisted with HRMS matching and retention-time prediction. <i>Analytica Chimica Acta</i> , 2020 , 1100, 88-96	6.6	7
25	Cerebrospinal Fluid Metabolomics After Natural Product Treatment in an Experimental Model of Cerebral Ischemia. <i>OMICS A Journal of Integrative Biology</i> , 2016 , 20, 670-680	3.8	6
24	System Biology-Guided Chemical Proteomics to Discover Protein Targets of Monoethylhexyl Phthalate in Regulating Cell Cycle. <i>Environmental Science & Environmental Science & E</i>	10.3	6
23	Bretschneider solution-induced alterations in the urine metabolome in cardiac surgery patients. <i>Scientific Reports</i> , 2018 , 8, 17774	4.9	6
22	Effects of Freeze-Thaw Cycles of Blood Samples on High-Coverage Quantitative Metabolomics. <i>Analytical Chemistry</i> , 2020 , 92, 9265-9272	7.8	5
21	Global-Scale Metabolomic Profiling of Human Hair for Simultaneous Monitoring of Endogenous Metabolome, Short- and Long-Term Exposome. <i>Frontiers in Chemistry</i> , 2021 , 9, 674265	5	5
20	SteroidXtract: Deep Learning-Based Pattern Recognition Enables Comprehensive and Rapid Extraction of Steroid-Like Metabolic Features for Automated Biology-Driven Metabolomics. <i>Analytical Chemistry</i> , 2021 , 93, 5735-5743	7.8	5
19	ISFrag: De Novo Recognition of In-Source Fragments for Liquid Chromatography-Mass Spectrometry Data. <i>Analytical Chemistry</i> , 2021 , 93, 10243-10250	7.8	5
18	EVA: Evaluation of Metabolic Feature Fidelity Using a Deep Learning Model Trained With Over 25000 Extracted Ion Chromatograms. <i>Analytical Chemistry</i> , 2021 , 93, 12181-12186	7.8	5
17	Reply to: TComment on "Microbiota Composition and Metabolism Are Associated With Gut Function in Parkinson's Disease"T <i>Movement Disorders</i> , 2020 , 35, 1695-1697	7	4
16	No endospore formation confirmed in members of the phylum Proteobacteria. <i>Applied and Environmental Microbiology</i> , 2020 ,	4.8	4
15	P3-090: Metabolomics analyses of salivary samples discriminate normal aging, mild cognitive impairment, and Alzheimer disease groups and produce biomarkers predictive of neurocognitive performance 2015, 11, P654-P654		3
14	Serum integrative omics reveals the landscape of human diabetic kidney disease. <i>Molecular Metabolism</i> , 2021 , 54, 101367	8.8	3
13	Patterned Signal Ratio Biases in Mass Spectrometry-Based Quantitative Metabolomics. <i>Analytical Chemistry</i> , 2021 , 93, 2254-2262	7.8	3

LIST OF PUBLICATIONS

12	Parallel metabolomics and lipidomics enables the comprehensive study of mouse brain regional metabolite and lipid patterns. <i>Analytica Chimica Acta</i> , 2020 , 1136, 168-177	6.6	2
11	Recognizing Contamination Fragment Ions in Liquid Chromatography-Tandem Mass Spectrometry Data. <i>Journal of the American Society for Mass Spectrometry</i> , 2021 , 32, 2296-2305	3.5	2
10	Computational Variation: An Underinvestigated Quantitative Variability Caused by Automated Data Processing in Untargeted Metabolomics. <i>Analytical Chemistry</i> , 2021 ,	7.8	2
9	Endogenous Metabolites Released by Sanitized Sprouting Alfalfa Seed Inhibit the Growth of Salmonella enterica. <i>MSystems</i> , 2021 , 6,	7.6	2
8	Cloud-based archived metabolomics data: A resource for in-source fragmentation/annotation, meta-analysis and systems biology <i>Analytical Science Advances</i> , 2020 , 1, 70-80	1.1	1
7	Metabolomics reveals that dietary xenoestrogens alter cellular metabolism induced by palbociclib/letrozole combination cancer therapy		1
6	Avant-garde assembly-line biosynthesis expands diversity of cyclic lipodepsipeptide products		1
5	Radical fragment ions in collision-induced dissociation-based tandem mass spectrometry <i>Analytica Chimica Acta</i> , 2022 , 1200, 339613	6.6	O
4	Comprehensive assessment of the diminished statistical power caused by nonlinear electrospray ionization responses in mass spectrometry-based metabolomics <i>Analytica Chimica Acta</i> , 2022 , 1200, 339614	6.6	О
3	RTP: One Effective Platform to Probe Reactive Compound Transformation Products and Its Applications for a Reactive Plasticizer BADGE. <i>Environmental Science & Environmental S</i>	14-1604	3 ^O
2	Epigenetic aberrations of gene expression in a rat model of hepatocellular carcinoma <i>Epigenetics</i> , 2022 , 1-22	5.7	О
1	SIMILE enables alignment of tandem mass spectra with statistical significance <i>Nature Communications</i> , 2022 , 13, 2510	17.4	Ο