
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6197881/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Future Climate Change Under SSP Emission Scenarios With GISSâ€E2.1. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	22
2	CMIP6 Historical Simulations (1850–2014) With GISSâ€E2.1. Journal of Advances in Modeling Earth Systems, 2021, 13, e2019MS002034.	1.3	49
3	Dynamical and Trace Gas Responses of the Quasiâ€Biennial Oscillation to Increased CO ₂ . Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034151.	1.2	11
4	Response of the Quasiâ€Biennial Oscillation to Historical Volcanic Eruptions. Geophysical Research Letters, 2021, 48, e2021GL095412.	1.5	5
5	GISSâ€E2.1: Configurations and Climatology. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002025.	1.3	234
6	GISS Model E2.2: A Climate Model Optimized for the Middle Atmosphere—Model Structure, Climatology, Variability, and Climate Sensitivity. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032204.	1.2	32
7	GISS Model E2.2: A Climate Model Optimized for the Middle Atmosphere—2. Validation of Largeâ€6cale Transport and Evaluation of Climate Response. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033151.	1.2	14
8	Multicentury Instability of the Atlantic Meridional Circulation in Rapid Warming Simulations With GISS ModelE2. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6331-6355.	1.2	19
9	Interactive nature of climate change and aerosol forcing. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3457-3480.	1.2	25
10	Climate responses to SATIRE and SIM-based spectral solar forcing in a 3D atmosphere-ocean coupled GCM. Journal of Space Weather and Space Climate, 2017, 7, A11.	1.1	5
11	Future climate change under RCP emission scenarios with GISS <scp>M</scp> odelE2. Journal of Advances in Modeling Earth Systems, 2015, 7, 244-267.	1.3	112
12	The QBO in two GISS global climate models: 1. Generation of the QBO. Journal of Geophysical Research D: Atmospheres, 2014, 119, 8798-8824.	1.2	31
13	CMIP5 historical simulations (1850–2012) with GISS ModelE2. Journal of Advances in Modeling Earth Systems, 2014, 6, 441-478.	1.3	133
14	Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. Journal of Advances in Modeling Earth Systems, 2014, 6, 141-184.	1.3	597
15	Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 1: Aerosol trends and radiative forcing. Atmospheric Chemistry and Physics, 2012, 12, 3333-3348.	1.9	157
16	Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 2: Climate response. Atmospheric Chemistry and Physics, 2012, 12, 3349-3362.	1.9	136
17	Regional warming from aerosol removal over the United States: Results from a transient 2010–2050 climate simulation. Atmospheric Environment, 2012, 46, 545-553.	1.9	43
18	Teleconnections in a warmer climate: the pliocene perspective. Climate Dynamics, 2011, 37, 1869-1887.	1.7	8

#	Article	IF	CITATIONS
19	Coupled Aerosol-Chemistry–Climate Twentieth-Century Transient Model Investigation: Trends in Short-Lived Species and Climate Responses. Journal of Climate, 2011, 24, 2693-2714.	1.2	98
20	Testing GISS-MM5 physics configurations for use in regional impacts studies. Climatic Change, 2010, 99, 567-587.	1.7	9
21	Atmospheric CO ₂ : Principal Control Knob Governing Earth's Temperature. Science, 2010, 330, 356-359.	6.0	443
22	A U.S. CLIVAR Project to Assess and Compare the Responses of Global Climate Models to Drought-Related SST Forcing Patterns: Overview and Results. Journal of Climate, 2009, 22, 5251-5272.	1.2	282
23	Irrigated afforestation of the Sahara and Australian Outback to end global warming. Climatic Change, 2009, 97, 409-437.	1.7	63
24	Exploring the stratospheric/tropospheric response to solar forcing. Journal of Geophysical Research, 2008, 113, .	3.3	89
25	The Consequences of Not Knowing Low- and High-Latitude Climate Sensitivity. Bulletin of the American Meteorological Society, 2008, 89, 855-864.	1.7	27
26	Supplement to The Consequences of not Knowing Low- High-Latitude Climate Sensitivity. Bulletin of the American Meteorological Society, 2008, 89, ES24-ES35.	1.7	0
27	Dangerous human-made interference with climate: a GISS modelE study. Atmospheric Chemistry and Physics, 2007, 7, 2287-2312.	1.9	211
28	A New Look at Stratospheric Sudden Warmings. Part II: Evaluation of Numerical Model Simulations. Journal of Climate, 2007, 20, 470-488.	1.2	129
29	Climate simulations for 1880–2003 with GISS modelE. Climate Dynamics, 2007, 29, 661-696.	1.7	227
30	Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data. Journal of Climate, 2006, 19, 153-192.	1.2	832
31	AO/NAO response to climate change: 1. Respective influences of stratospheric and tropospheric climate changes. Journal of Geophysical Research, 2005, 110, .	3.3	58
32	Efficacy of climate forcings. Journal of Geophysical Research, 2005, 110, .	3.3	1,104
33	The Relative Importance of Solar and Anthropogenic Forcing of Climate Change between the Maunder Minimum and the Present. Journal of Climate, 2004, 17, 906-929.	1.2	96
34	Sensitivity of present and future surface temperatures to precipitation characteristics. Climate Research, 2004, 28, 53-65.	0.4	26
35	The Sun's Role in Climate Variations. Science, 2002, 296, 673-677.	6.0	274
36	Sensitivity of tracer transports and stratospheric ozone to sea surface temperature patterns in the doubled CO2climate. Journal of Geophysical Research, 2002, 107, ACL 25-1.	3.3	24

#	Article	IF	CITATIONS
37	Effects of glacial meltwater in the GISS coupled atmosphere-ocean model: 2. A bipolar seesaw in Atlantic Deep Water production. Journal of Geophysical Research, 2001, 106, 27355-27365.	3.3	40
38	Effects of glacial meltwater in the GISS coupled atmosphereocean model: 1. North Atlantic Deep Water response. Journal of Geophysical Research, 2001, 106, 27335-27353.	3.3	59
39	Hypothesized climate forcing time series for the last 500 years. Journal of Geophysical Research, 2001, 106, 14783-14803.	3.3	166
40	Climate change and the middle atmosphere: 5. Paleostratosphere in cold and warm climates. Journal of Geophysical Research, 2001, 106, 20195-20212.	3.3	26
41	Radiative cooling by stratospheric water vapor: Big differences in GCM results. Geophysical Research Letters, 2001, 28, 2791-2794.	1.5	50
42	The Impact of Sea Ice Concentration Accuracies on Climate Model Simulations with the GISS GCM. Journal of Climate, 2001, 14, 2606-2623.	1.2	41
43	Tropical cooling and the isotopic composition of precipitation in general circulation model simulations of the ice age climate. Climate Dynamics, 2001, 17, 489-502.	1.7	16
44	Solar Forcing of Regional Climate Change During the Maunder Minimum. Science, 2001, 294, 2149-2152.	6.0	688
45	SUN-CLIMATE CONNECTIONS: Earth's Response to a Variable Sun. Science, 2001, 292, 234-236.	6.0	101
46	GCM Hindcasts of SST Forced Climate Variability over Agriculturally Intensive Regions. Climatic Change, 2000, 45, 279-322.	1.7	3
47	Relating paleoclimate data and past temperature gradients: Some suggestive rules. Quaternary Science Reviews, 2000, 19, 381-390.	1.4	60
48	Influence of the latitudinal temperature gradient on soil dust concentration and deposition in Greenland. Journal of Geophysical Research, 2000, 105, 7199-7212.	3.3	21
49	Complexity and Climate. Science, 1999, 284, 105-107.	6.0	167
50	Solar Cycle Variability, Ozone, and Climate. Science, 1999, 284, 305-308.	6.0	524
51	Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophysical Research Letters, 1999, 26, 859-862.	1.5	374
52	Swiss glacier recession since the Little Ice Age: Reconciliation with climate records. Geophysical Research Letters, 1999, 26, 1909-1912.	1.5	18
53	Use of on-line tracers as a diagnostic tool in general circulation model development: 2. Transport between the troposphere and stratosphere. Journal of Geophysical Research, 1999, 104, 9151-9167.	3.3	69
54	Response to CO2Transient Increase in the GISS Coupled Model:Regional Coolings in a Warming Climate. Journal of Climate, 1999, 12, 531-539.	1.2	67

#	Article	IF	CITATIONS
55	Interannual Variability of the Antarctic Ozone Hole in a GCM. Part II: A Comparison of Unforced and QBO-Induced Variability. Journals of the Atmospheric Sciences, 1999, 56, 1873-1884.	0.6	8
56	Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations. Nature, 1998, 392, 589-592.	13.7	509
57	A preliminary zonal mean climatology of water vapour in the stratosphere and mesosphere. Advances in Space Research, 1998, 21, 1417-1420.	1.2	10
58	Beryllium 10/beryllium 7 as a tracer of stratospheric transport. Journal of Geophysical Research, 1998, 103, 3907-3917.	3.3	80
59	Latitudinal temperature gradients and climate change. Journal of Geophysical Research, 1998, 103, 5943-5971.	3.3	148
60	The dry stratosphere: A limit on cometary water influx. Geophysical Research Letters, 1998, 25, 1649-1652.	1.5	15
61	Climate Forcing by Changing Solar Radiation. Journal of Climate, 1998, 11, 3069-3094.	1.2	214
62	Climate Change and the Middle Atmosphere. Part III: The Doubled CO2Climate Revisited. Journal of Climate, 1998, 11, 876-894.	1.2	112
63	Climate Change and the Middle Atmosphere. Part IV: Ozone Response to Doubled CO2. Journal of Climate, 1998, 11, 895-918.	1.2	53
64	THE ROLE OF MOISTURE TRANSPORT BETWEEN GROUND AND ATMOSPHERE IN GLOBAL CHANGE. Annual Review of Environment and Resources, 1997, 22, 47-74.	1.2	10
65	Interannual Variability of the Antarctic Ozone Hole in a GCM. Part I: The Influence of Tropospheric Wave Variability. Journals of the Atmospheric Sciences, 1997, 54, 2308-2319.	0.6	41
66	An Efficient Approach to Modeling the Topographic Control of Surface Hydrology for Regional and Global Climate Modeling. Journal of Climate, 1997, 10, 118-137.	1.2	224
67	Improved surface and boundary layer models for the Goddard Institute for Space Studies general circulation model. Journal of Geophysical Research, 1997, 102, 16407-16422.	3.3	31
68	The Role of sea ice in 2×CO2climate model sensitivity: Part II: Hemispheric dependencies. Geophysical Research Letters, 1997, 24, 1491-1494.	1.5	32
69	Wonderland climate model. Journal of Geophysical Research, 1997, 102, 6823-6830.	3.3	13
70	Possible role of dust-induced regional warming in abrupt climate change during the last glacial period. Nature, 1996, 384, 447-449.	13.7	163
71	The Importance of Mesoscale Circulations Generated by Subgrid-Scale Landscape Heterogeneities in General Circulation Models. Journal of Climate, 1995, 8, 191-205.	1.2	70
72	Modeling the Effects of UV Variability and the QBO on the Troposphere–Stratosphere System. Part II: The Troposphere. Journal of Climate, 1995, 8, 2080-2095.	1.2	70

#	Article	IF	CITATIONS
73	Modeling the Effects of UV Variability and the QBO on the Troposphere–Stratosphere System. Part I:. The Middle Atmosphere. Journal of Climate, 1995, 8, 2058-2079.	1.2	104
74	The Role of Sea Ice in 2×CO2Climate Model Sensitivity. Part I: The Total Influence of Sea Ice Thickness and Extent. Journal of Climate, 1995, 8, 449-463.	1.2	168
75	A coupled atmosphereâ€ocean model for transient climate change studies. Atmosphere - Ocean, 1995, 33, 683-730.	0.6	297
76	Comparison between SAGE II and ISCCP high-level clouds: 1. Global and zonal mean cloud amounts. Journal of Geophysical Research, 1995, 100, 1121-1135.	3.3	88
77	Seasonal Precipitation Timing and Ice Core Records. Science, 1995, 269, 247-248.	6.0	27
78	Estimating Solar Forcing of Climate Change during the Maunder Minimum. International Astronomical Union Colloquium, 1994, 143, 236-243.	0.1	3
79	Modeling Global Lightning Distributions in a General Circulation Model. Monthly Weather Review, 1994, 122, 1930-1939.	0.5	167
80	Glacial-Interglacial Changes in Moisture Sources for Greenland: Influences on the Ice Core Record of Climate. Science, 1994, 263, 508-511.	6.0	215
81	Joint investigations of the middle Pliocene climate II: GISS GCM Northern Hemisphere results. Global and Planetary Change, 1994, 9, 197-219.	1.6	128
82	The Impact of a 2 × CO2Climate on Lightning-Caused Fires. Journal of Climate, 1994, 7, 1484-1494.	1.2	190
83	Potential effects of cloud optical thickness on climate warming. Nature, 1993, 366, 670-672.	13.7	19
84	The role of the stratosphere in climate change. Surveys in Geophysics, 1993, 14, 133-165.	2.1	31
85	Sensitivity of Asian and African climate to variations in seasonal insolation, glacial ice cover, sea surface temperature, and Asian orography. Journal of Geophysical Research, 1993, 98, 7265-7287.	3.3	134
86	What determines the cloudâ€ŧoâ€ground lightning fraction in thunderstorms?. Geophysical Research Letters, 1993, 20, 463-466.	1.5	200
87	Hypothesized causes of decade-to-century-scale climate variability: Climate model results. Quaternary Science Reviews, 1993, 12, 357-374.	1.4	180
88	lsotopic responses to interannual climate variability simulated by an atmospheric general circulation model. Quaternary Science Reviews, 1993, 12, 387-406.	1.4	30
89	GCM Simulations of Volcanic Aerosol Forcing. Part I: Climate Changes Induced by Steady-State Perturbations. Journal of Climate, 1993, 6, 1719-1742.	1.2	24
90	Global Patterns of Cloud Optical Thickness Variation with Temperature. Journal of Climate, 1992, 5, 1484-1495.	1.2	107

#	Article	IF	CITATIONS
91	Climate Change and the Middle Atmosphere. Part II: The Impact of Volcanic Aerosols. Journal of Climate, 1992, 5, 189-208.	1.2	69
92	Pangaean climate during the Early Jurassic: GCM simulations and the sedimentary record of paleoclimate. Bulletin of the Geological Society of America, 1992, 104, 543.	1.6	149
93	Modelling the hydrological cycle in assessments of climate change. Nature, 1992, 358, 119-122.	13.7	78
94	An uplifting experience. Nature, 1992, 360, 414-415.	13.7	4
95	The Effect of Snow Cover on the Climate. Journal of Climate, 1991, 4, 689-706.	1.2	275
96	Climate Variability and Climate Change. Developments in Atmospheric Science, 1991, 19, 69-78.	0.3	17
97	Positive water vapour feedback in climate models confirmed by satellite data. Nature, 1991, 349, 500-503.	13.7	172
98	Climate-induced changes in forest disturbance and vegetation. Nature, 1990, 343, 51-53.	13.7	505
99	Puzzles from the tropics. Nature, 1990, 346, 317-318.	13.7	19
100	Climate Change and the Middle Atmosphere. Part I: The Doubled CO2Climate. Journals of the Atmospheric Sciences, 1990, 47, 475-494.	0.6	180
101	Climatic effects of reduced Arctic sea ice limits in the Giss II General Circulation Model. Paleoceanography, 1990, 5, 367-382.	3.0	71
102	Change in climate variability in the 21st century. Climatic Change, 1989, 14, 5-37.	1.7	201
103	Climate change in the circum-North Atlantic region during the last deglaciation. Nature, 1989, 338, 553-557.	13.7	127
104	Modelling the future: a joint venture. Nature, 1988, 334, 483-486.	13.7	14
105	Global climate changes as forecast by Goddard Institute for Space Studies threeâ€dimensional model. Journal of Geophysical Research, 1988, 93, 9341-9364.	3.3	820
106	Dependence of Warm and Cold Climate Depiction on Climate Model Resolution. Journal of Climate, 1988, 1, 965-997.	1.2	69
107	The GISS Global Climate-Middle Atmosphere Model. Part I: Model Structure and Climatology. Journals of the Atmospheric Sciences, 1988, 45, 329-370.	0.6	159
108	The GISS Global Climate-Middle Atmosphere Model. Part II. Model Variability Due to Interactions between Planetary Waves, the Mean Circulation and Gravity Wave Drag. Journals of the Atmospheric Sciences, 1988, 45, 371-386.	0.6	56

#	Article	IF	CITATIONS
109	Global sources of local precipitation as determined by the Nasa/Giss GCM. Geophysical Research Letters, 1986, 13, 121-124.	1.5	177
110	Comment on S. H. Schneider's editorial ?can modeling of the ancient past verify prediction of future climates??. Climatic Change, 1986, 9, 357-360.	1.7	7
111	The impact of cold North Atlantic sea surface temperatures on climate: implications for the Younger Dryas cooling (11?10 k). Climate Dynamics, 1986, 1, 3-33.	1.7	268
112	Sea-level effects due to long-term climate change as estimated from global climate models. Geophysical Journal International, 1986, 87, 117-118.	1.0	0
113	The Dynamics of Warm and Cold Climates. Journals of the Atmospheric Sciences, 1986, 43, 3-25.	0.6	81
114	Does the ocean–atmosphere system have more than one stable mode of operation?. Nature, 1985, 315, 21-26.	13.7	998
115	Terrestrial Conditions at the Last Glacial Maximum and CLIMAP Sea-Surface Temperature Estimates: Are They Consistent?. Quaternary Research, 1985, 24, 1-22.	1.0	418
116	Climate Response Times: Dependence on Climate Sensitivity and Ocean Mixing. Science, 1985, 229, 857-859.	6.0	275
117	Reply to Rasool. Climatic Change, 1983, 5, 203-204.	1.7	0
118	Efficient Three-Dimensional Global Models for Climate Studies: Models I and II. Monthly Weather Review, 1983, 111, 609-662.	0.5	1,022
119	Climatic Effects of Atmospheric Carbon Dioxide. Science, 1983, 220, 874-875.	6.0	16
120	The Influence of Ground Moisture Conditions in North America on Summer Climate as Modeled in the GISS GCM. Monthly Weather Review, 1982, 110, 1487-1494.	0.5	117
121	Climate Impact of Increasing Atmospheric Carbon Dioxide. Science, 1981, 213, 957-966.	6.0	911
122	Probing the atmosphere with infrasound. Physics Teacher, 1979, 17, 102-108.	0.2	0
123	Investigation of the lower thermosphere results of ten years of continuous observations with natural infrasound. Journal of Atmospheric and Solar-Terrestrial Physics, 1978, 40, 1199-1209.	0.9	29
124	Heating of the lower thermosphere by the dissipation of acoustic waves. Journal of Atmospheric and Solar-Terrestrial Physics, 1977, 39, 445-456.	0.9	34
125	Tidal wind control of long-range rocket infrasound. Journal of Geophysical Research, 1975, 80, 1662-1664.	3.3	6
126	Relationship Between Midstratospheric Temperatures and Tropospheric Synoptic Features1. Monthly Weather Review, 1973, 101, 475-485.	0.5	0