
Christian G Frankær

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6197759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Concentrated protein solutions investigated using acoustic levitation and small-angle X-ray scattering. Journal of Synchrotron Radiation, 2020, 27, 396-404.	2.4	3
2	An Optical pH Sensor Based on Diazaoxatriangulenium and Isopropylâ€Bridged Diazatriangulenium Covalently Bound in a Composite Sol–Gel. Advanced Materials Technologies, 2019, 4, 1800561.	5.8	21
3	Investigating the Time Response of an Optical pH Sensor Based on a Polysiloxane–Polyethylene Glycol Composite Material Impregnated with a pH-Responsive Triangulenium Dye. ACS Omega, 2019, 4, 8381-8389.	3.5	10
4	Factors Affecting Seawater-Based Pretreatment of Lignocellulosic Date Palm Residues. , 2019, , 695-713.		2
5	A unified approach for investigating chemosensor properties – dynamic characteristics. Analyst, The, 2019, 144, 2208-2225.	3.5	11
6	Tuning the p <i>K</i> _a of a pH Responsive Fluorophore and the Consequences for Calibration of Optical Sensors Based on a Single Fluorophore but Multiple Receptors. ACS Sensors, 2019, 4, 764-773.	7.8	24
7	Optical Chemical Sensor Using Intensity Ratiometric Fluorescence Signals for Fast and Reliable pH Determination. ACS Sensors, 2019, 4, 26-31.	7.8	47
8	Biocompatible Microporous Organically Modified Silicate Material with Rapid Internal Diffusion of Protons. ACS Sensors, 2018, 3, 692-699.	7.8	26
9	A Fluorescence Intensity Ratiometric Fiber Optics–Based Chemical Sensor for Monitoring pH. Advanced Materials Technologies, 2018, 3, 1800205.	5.8	29
10	Reviving Pretreatment Effectiveness of Deep Eutectic Solvents on Lignocellulosic Date Palm Residues by Prior Recalcitrance Reduction. Industrial & Engineering Chemistry Research, 2017, 56, 3167-3174.	3.7	74
11	Insulin fibrillation: The influence and coordination of Zn 2+. Journal of Structural Biology, 2017, 199, 27-38.	2.8	34
12	Factors affecting seawater-based pretreatment of lignocellulosic date palm residues. Bioresource Technology, 2017, 245, 540-548.	9.6	7
13	Reduction of hypervalent iodine by coordination to iron(<scp>iii</scp>) and the crystal structures of PhIO and PhIO ₂ . Dalton Transactions, 2016, 45, 17714-17722.	3.3	17
14	Characterization of cellulose fibers by powder diffraction. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s508-s508.	0.1	0
15	Seawater as Alternative to Freshwater in Pretreatment of Date Palm Residues for Bioethanol Production in Coastal and/or Arid Areas. ChemSusChem, 2015, 8, 3823-3831.	6.8	47
16	Hydrothermal Pretreatment of Date Palm (Phoenix dactyliferaL.) Leaflets and Rachis to Enhance Enzymatic Digestibility and Bioethanol Potential. BioMed Research International, 2015, 2015, 1-13.	1.9	21
17	Remote Loading of ⁶⁴ Cu ²⁺ into Liposomes without the Use of Ion Transport Enhancers. ACS Applied Materials & Interfaces, 2015, 7, 22796-22806.	8.0	35
18	Strontium Localization in Bone Tissue Studied by X-Ray Absorption Spectroscopy. Calcified Tissue International. 2014. 94. 248-257.	3.1	22

#	Article	IF	CITATIONS
19	X-ray powder diffraction: A powerful tool for industrial protein production. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C1559-C1559.	0.1	0
20	Monitoring protein precipitates by in-house X-ray powder diffraction. Powder Diffraction, 2013, 28, S458-S469.	0.2	1
21	The structures of T6, T3R3and R6bovine insulin: combining X-ray diffraction and absorption spectroscopy. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1259-1271.	2.5	15
22	A sample holder for in-house X-ray powder diffraction studies of protein powders. Journal of Applied Crystallography, 2011, 44, 1288-1290.	4.5	6