Christian G Frankær

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6197759/publications.pdf

Version: 2024-02-01

22 452 papers citations

13 19
h-index g-index

22 22 all docs citations

22 times ranked 775 citing authors

#	Article	IF	CITATIONS
1	Reviving Pretreatment Effectiveness of Deep Eutectic Solvents on Lignocellulosic Date Palm Residues by Prior Recalcitrance Reduction. Industrial & Engineering Chemistry Research, 2017, 56, 3167-3174.	3.7	74
2	Seawater as Alternative to Freshwater in Pretreatment of Date Palm Residues for Bioethanol Production in Coastal and/or Arid Areas. ChemSusChem, 2015, 8, 3823-3831.	6.8	47
3	Optical Chemical Sensor Using Intensity Ratiometric Fluorescence Signals for Fast and Reliable pH Determination. ACS Sensors, 2019, 4, 26-31.	7.8	47
4	Remote Loading of ⁶⁴ Cu ²⁺ into Liposomes without the Use of Ion Transport Enhancers. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22796-22806.	8.0	35
5	Insulin fibrillation: The influence and coordination of Zn 2+. Journal of Structural Biology, 2017, 199, 27-38.	2.8	34
6	A Fluorescence Intensity Ratiometric Fiber Optics–Based Chemical Sensor for Monitoring pH. Advanced Materials Technologies, 2018, 3, 1800205.	5.8	29
7	Biocompatible Microporous Organically Modified Silicate Material with Rapid Internal Diffusion of Protons. ACS Sensors, 2018, 3, 692-699.	7.8	26
8	Tuning the p <i>K</i> _a of a pH Responsive Fluorophore and the Consequences for Calibration of Optical Sensors Based on a Single Fluorophore but Multiple Receptors. ACS Sensors, 2019, 4, 764-773.	7.8	24
9	Strontium Localization in Bone Tissue Studied by X-Ray Absorption Spectroscopy. Calcified Tissue International, 2014, 94, 248-257.	3.1	22
10	Hydrothermal Pretreatment of Date Palm (Phoenix dactyliferal.) Leaflets and Rachis to Enhance Enzymatic Digestibility and Bioethanol Potential. BioMed Research International, 2015, 2015, 1-13.	1.9	21
11	An Optical pH Sensor Based on Diazaoxatriangulenium and Isopropylâ€Bridged Diazatriangulenium Covalently Bound in a Composite Sol–Gel. Advanced Materials Technologies, 2019, 4, 1800561.	5.8	21
12	Reduction of hypervalent iodine by coordination to iron(<scp>iii</scp>) and the crystal structures of PhIO and PhIO ₂ . Dalton Transactions, 2016, 45, 17714-17722.	3.3	17
13	The structures of T6, T3R3and R6bovine insulin: combining X-ray diffraction and absorption spectroscopy. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1259-1271.	2.5	15
14	A unified approach for investigating chemosensor properties – dynamic characteristics. Analyst, The, 2019, 144, 2208-2225.	3.5	11
15	Investigating the Time Response of an Optical pH Sensor Based on a Polysiloxane–Polyethylene Glycol Composite Material Impregnated with a pH-Responsive Triangulenium Dye. ACS Omega, 2019, 4, 8381-8389.	3.5	10
16	Factors affecting seawater-based pretreatment of lignocellulosic date palm residues. Bioresource Technology, 2017, 245, 540-548.	9.6	7
17	A sample holder for in-house X-ray powder diffraction studies of protein powders. Journal of Applied Crystallography, 2011, 44, 1288-1290.	4.5	6
18	Concentrated protein solutions investigated using acoustic levitation and small-angle X-ray scattering. Journal of Synchrotron Radiation, 2020, 27, 396-404.	2.4	3

#	Article	IF	CITATIONS
19	Factors Affecting Seawater-Based Pretreatment of Lignocellulosic Date Palm Residues. , 2019, , 695-713.		2
20	Monitoring protein precipitates by in-house X-ray powder diffraction. Powder Diffraction, 2013, 28, S458-S469.	0.2	1
21	Characterization of cellulose fibers by powder diffraction. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s508-s508.	0.1	O
22	X-ray powder diffraction: A powerful tool for industrial protein production. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C1559-C1559.	0.1	0