Amir Muhammad Afzal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6196651/publications.pdf

Version: 2024-02-01

759233 794594 19 526 12 19 citations h-index g-index papers 19 19 19 557 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High-Performance p-BP/n-PdSe ₂ Near-Infrared Photodiodes with a Fast and Gate-Tunable Photoresponse. ACS Applied Materials & Interfaces, 2020, 12, 19625-19634.	8.0	67
2	Highly Sensitive, Ultrafast, and Broadband Photoâ€Detecting Fieldâ€Effect Transistor with Transitionâ€Metal Dichalcogenide van der Waals Heterostructures of MoTe ₂ and PdSe ₂ . Advanced Science, 2021, 8, e2003713.	11.2	65
3	Temperature-Dependent and Gate-Tunable Rectification in a Black Phosphorus/WS ₂ van der Waals Heterojunction Diode. ACS Applied Materials & Interfaces, 2018, 10, 13150-13157.	8.0	61
4	WS ₂ /GeSe/WS ₂ Bipolar Transistor-Based Chemical Sensor with Fast Response and Recovery Times. ACS Applied Materials & Samp; Interfaces, 2020, 12, 39524-39532.	8.0	48
5	Multifunctional and high-performance GeSe/PdSe ₂ heterostructure device with a fast photoresponse. Journal of Materials Chemistry C, 2020, 8, 4743-4753.	5.5	47
6	Tunneling-based rectification and photoresponsivity in black phosphorus/hexagonal boron nitride/rhenium diselenide van der Waals heterojunction diode. Nanoscale, 2020, 12, 3455-3468.	5.6	40
7	pâ€GeSe/nâ€ReS ₂ Heterojunction Rectifier Exhibiting A Fast Photoresponse with Ultraâ€High Frequencyâ€Switching Applications. Advanced Materials Interfaces, 2021, 8, 2100705.	3.7	29
8	Oxygen vacancies induced room temperature ferromagnetism and enhancedÂdielectric propertiesÂin Co and Mn co-doped ZnOÂnanoparticles. Journal of Materials Science: Materials in Electronics, 2021, 32, 9463-9474.	2.2	28
9	Formation of an MoTe ₂ based Schottky junction employing ultra-low and high resistive metal contacts. RSC Advances, 2019, 9, 10017-10023.	3.6	27
10	Ultrafast and Highly Stable Photodetectors Based on p-GeSe/n-ReSe ₂ Heterostructures. ACS Applied Materials & Diterfaces, 2021, 13, 47882-47894.	8.0	26
11	Gate Tunable Transport in Graphene/MoS2/(Cr/Au) Vertical Field-Effect Transistors. Nanomaterials, 2018, 8, 14.	4.1	22
12	Gate Modulation of the Spin-orbit Interaction in Bilayer Graphene Encapsulated by WS2 films. Scientific Reports, 2018, 8, 3412.	3.3	20
13	Fast and high photoresponsivity gallium telluride/hafnium selenide van der Waals heterostructure photodiode. Journal of Materials Chemistry C, 2021, 9, 7110-7118.	5.5	10
14	High performance and gate-controlled GeSe/HfS ₂ negative differential resistance device. RSC Advances, 2022, 12, 1278-1286.	3.6	9
15	Lamellar shape lead tungstate (PbWO ₄) nanostructures as synergistic catalyst for peroxidase mimetic activity. Materials Research Express, 2020, 7, 015520.	1.6	7
16	Ultraviolet-light-driven current modulation of Au/WS2/Gr Schottky barrier. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113837.	2.7	6
17	A comparative study of electrical and opto-electrical properties of a few-layer p-WSe ₂ /n-WS ₂ heterojunction diode on SiO ₂ and h-BN substrates. RSC Advances, 2021, 11, 17901-17909.	3.6	6
18	Ultrasensitive V doped WO3 1D nanorods heterojunction photodetector with pronounced photosensing activities. Journal of Alloys and Compounds, 2022, 909, 164753.	5.5	5

#	Article	IF	CITATIONS
19	Enhancing the electronic properties of the graphene-based field-effect transistor via chemical doping of KBr. Journal of Materials Science: Materials in Electronics, 2022, 33, 12416-12425.	2.2	3