Xinyun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6196617/publications.pdf

Version: 2024-02-01

279798 315739 1,893 69 23 38 h-index citations g-index papers 70 70 70 2235 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Integrative analysis of transcriptomic and metabolomic profiles reveal the complex molecular regulatory network of meat quality in Enshi black pigs. Meat Science, 2022, 183, 108642.	5 . 5	32
2	Epigenomics analysis of miRNA cis-regulatory elements in pig muscle and fat tissues. Genomics, 2022, 114, 110276.	2.9	7
3	Rapid Visual CRISPR Assay: A Naked-Eye Colorimetric Detection Method for Nucleic Acids Based on CRISPR/Cas12a and a Convolutional Neural Network. ACS Synthetic Biology, 2022, 11, 383-396.	3.8	30
4	Detection of Four Porcine Enteric Coronaviruses Using CRISPR-Cas12a Combined with Multiplex Reverse Transcriptase Loop-Mediated Isothermal Amplification Assay. Viruses, 2022, 14, 833.	3.3	12
5	Identification of the CKM Gene as a Potential Muscle-Specific Safe Harbor Locus in Pig Genome. Genes, 2022, 13, 921.	2.4	2
6	An Inexpensive CRISPR-Based Point-of-Care Test for the Identification of Meat Species and Meat Products. Genes, 2022, 13, 912.	2.4	9
7	Enhancer-promoter interaction maps provide insights into skeletal muscle-related traits in pig genome. BMC Biology, 2022, 20, .	3.8	13
8	rMVP: A Memory-efficient, Visualization-enhanced, and Parallel-accelerated Tool for Genome-wide Association Study. Genomics, Proteomics and Bioinformatics, 2021, 19, 619-628.	6.9	396
9	A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome. Nature Communications, 2021, 12, 2217.	12.8	63
10	Genome-wide association and transcriptome studies identify candidate genes and pathways for feed conversion ratio in pigs. BMC Genomics, 2021, 22, 294.	2.8	11
11	The advancements, challenges, and future implications of the CRISPR/Cas9 system in swine research. Journal of Genetics and Genomics, 2021, 48, 347-360.	3.9	8
12	Improvement, identification, and target prediction for miRNAs in the porcine genome by using massive, public high-throughput sequencing data. Journal of Animal Science, 2021, 99, .	0.5	2
13	Identifying candidate genes associated with sperm morphology abnormalities using weighted single-step GWAS in a Duroc boar population. Theriogenology, 2020, 141, 9-15.	2.1	18
14	Genome-wide analysis of expression QTL (eQTL) and allele-specific expression (ASE) in pig muscle identifies candidate genes for meat quality traits. Genetics Selection Evolution, 2020, 52, 59.	3.0	22
15	CRISPR screening of porcine sgRNA library identifies host factors associated with Japanese encephalitis virus replication. Nature Communications, 2020, 11, 5178.	12.8	40
16	Identification of ACTB Gene as a Potential Safe Harbor Locus in Pig Genome. Molecular Biotechnology, 2020, 62, 589-597.	2.4	4
17	Enhancing the antibacterial activities of sow milk via site-specific knock-in of a lactoferrin gene in pigs using CRISPR/Cas9 technology. Cell and Bioscience, 2020, 10, 133.	4.8	11
18	LncRNAs are regulated by chromatin states and affect the skeletal muscle cell differentiation. Cell Proliferation, 2020, 53, e12879.	5. 3	12

#	Article	IF	CITATIONS
19	Application of CRISPR-Cas12a Enhanced Fluorescence Assay Coupled with Nucleic Acid Amplification for the Sensitive Detection of African Swine Fever Virus. ACS Synthetic Biology, 2020, 9, 2339-2350.	3.8	54
20	A gene prioritization method based on a swine multi-omics knowledgebase and a deep learning model. Communications Biology, 2020, 3, 502.	4.4	36
21	Three functional mutation sites affect the immune response of pigs through altering the expression pattern and IgV domain of the CD4 protein. BMC Molecular and Cell Biology, 2020, 21, 91.	2.0	O
22	Whole genome variants across 57 pig breeds enable comprehensive identification of genetic signatures that underlie breed features. Journal of Animal Science and Biotechnology, 2020, 11, 115.	5.3	14
23	Identification of functional mutations at FOXP3 binding site within BIC gene that alter the expression of miR-155 in pigs. Gene, 2020, 744, 144631.	2.2	3
24	KAML: improving genomic prediction accuracy of complex traits using machine learning determined parameters. Genome Biology, 2020, 21, 146.	8.8	51
25	Genome-Wide Patterns of Homozygosity and Relevant Characterizations on the Population Structure in Piétrain Pigs. Genes, 2020, 11, 577.	2.4	10
26	Genome-Wide Association Study and Fine Mapping Reveals Candidate Genes for Birth Weight of Yorkshire and Landrace Pigs. Frontiers in Genetics, 2020, 11, 183.	2.3	11
27	Chromatin accessibility is associated with the changed expression of miRNAs that target members of the Hippo pathway during myoblast differentiation. Cell Death and Disease, 2020, 11, 148.	6.3	9
28	miR-208b modulating skeletal muscle development and energy homoeostasis through targeting distinct targets. RNA Biology, 2020, 17, 743-754.	3.1	23
29	Weighted single-step GWAS identified candidate genes associated with semen traits in a Duroc boar population. BMC Genomics, 2019, 20, 797.	2.8	27
30	Identification of Glyceraldehyde-3-Phosphate Dehydrogenase Gene as an Alternative Safe Harbor Locus in Pig Genome. Genes, 2019, 10, 660.	2.4	7
31	Genome-Wide Association Study Reveals Candidate Genes for Growth Relevant Traits in Pigs. Frontiers in Genetics, 2019, 10, 302.	2.3	42
32	Identification and Conservation Analysis of Cis-Regulatory Elements in Pig Liver. Genes, 2019, 10, 348.	2.4	7
33	Identifying Selection Signatures for Backfat Thickness in Yorkshire Pigs Highlights New Regions Affecting Fat Metabolism. Genes, 2019, 10, 254.	2.4	14
34	Widespread Existence of Quorum Sensing Inhibitors in Marine Bacteria: Potential Drugs to Combat Pathogens with Novel Strategies. Marine Drugs, 2019, 17, 275.	4.6	31
35	Quantification of allelic differential expression using a simple Fluorescence primer PCR-RFLP-based method. Scientific Reports, 2019, 9, 6334.	3.3	1
36	H3K27me3 Depletion during Differentiation Promotes Myogenic Transcription in Porcine Satellite Cells. Genes, 2019, 10, 231.	2.4	13

#	Article	IF	CITATIONS
37	The DNA Methylation Status of Wnt and $Tgfl^2$ Signals Is a Key Factor on Functional Regulation of Skeletal Muscle Satellite Cell Development. Frontiers in Genetics, 2019, 10, 220.	2.3	15
38	Evaluation of the effects of sequence length and microsatellite instability on single-guide RNA activity and specificity. International Journal of Biological Sciences, 2019, 15, 2641-2653.	6.4	8
39	A miR-18a binding-site polymorphism in CDC42 3′UTR affects CDC42 mRNA expression in placentas and is associated with litter size in pigs. Mammalian Genome, 2019, 30, 34-41.	2.2	12
40	sRNAPrimerDB: comprehensive primer design and search web service for small non-coding RNAs. Bioinformatics, 2019, 35, 1566-1572.	4.1	18
41	Neuronal Signal Transduction-Involved Genes in Pig Hypothalamus Affect Feed Efficiency as Revealed by Transcriptome Analysis. BioMed Research International, 2018, 2018, 1-10.	1.9	24
42	Transcriptional Profiling of Leucocyte Count Variation from Porcine Peripheral Blood Reveals Differential Gene Expression. BioMed Research International, 2018, 2018, 1-11.	1.9	3
43	Genomic Analysis To Identify Signatures of Artificial Selection and Loci Associated with Important Economic Traits in Duroc Pigs. G3: Genes, Genomes, Genetics, 2018, 8, 3617-3625.	1.8	18
44	Prostate Luminal Progenitor Cells in Development and Cancer. Trends in Cancer, 2018, 4, 769-783.	7.4	54
45	Transcriptome Analysis of Potential miRNA Involved in Adipogenic Differentiation of C2C12 Myoblasts. Lipids, 2018, 53, 375-386.	1.7	18
46	A survey of transcriptome complexity in Sus scrofa using single-molecule long-read sequencing. DNA Research, 2018, 25, 421-437.	3.4	83
47	Transcriptome Analysis of Adipose Tissue Indicates That the cAMP Signaling Pathway Affects the Feed Efficiency of Pigs. Genes, 2018, 9, 336.	2.4	26
48	Population size may shape the accumulation of functional mutations following domestication. BMC Evolutionary Biology, 2018, 18, 4.	3.2	15
49	Synergistic effects of TGF \hat{I}^2 2, WNT9a, and FGFR4 signals attenuate satellite cell differentiation during skeletal muscle development. Aging Cell, 2018, 17, e12788.	6.7	39
50	Proteomic analysis indicates that mitochondrial energy metabolism in skeletal muscle tissue is negatively correlated with feed efficiency in pigs. Scientific Reports, 2017, 7, 45291.	3.3	41
51	CRISPR-offinder: a CRISPR guide RNA design and off-target searching tool for user-defined protospacer adjacent motif. International Journal of Biological Sciences, 2017, 13, 1470-1478.	6.4	44
52	Fibroblast Growth Factor 21 Promotes C2C12 Cells Myogenic Differentiation by Enhancing Cell Cycle Exit. BioMed Research International, 2017, 2017, 1-9.	1.9	11
53	Candidate Gene Identification of Feed Efficiency and Coat Color Traits in a C57BL/6J × Kunming F2 Mice Population Using Genome-Wide Association Study. BioMed Research International, 2017, 2017, 1-7.	1.9	6
54	<i>Cis-</i> Natural Antisense Transcripts Are Mainly Co-expressed with Their Sense Transcripts and Primarily Related to Energy Metabolic Pathways during Muscle Development. International Journal of Biological Sciences, 2016, 12, 1010-1021.	6.4	6

#	Article	IF	CITATIONS
55	Natural Functional SNPs in miR-155 Alter Its Expression Level, Blood Cell Counts, and Immune Responses. Frontiers in Immunology, 2016, 7, 295.	4.8	13
56	Cellular Localization and Regulation of Expression of the PLET1 Gene in Porcine Placenta. International Journal of Molecular Sciences, 2016, 17, 2048.	4.1	8
57	Transcriptome Analysis Reveals that Vitamin A Metabolism in the Liver Affects Feed Efficiency in Pigs. G3: Genes, Genomes, Genetics, 2016, 6, 3615-3624.	1.8	37
58	miR-124 attenuates Japanese encephalitis virus replication by targeting DNM2. Virology Journal, 2016, 13, 105.	3.4	19
59	Metabolomic investigation of porcine muscle and fatty tissue after Clenbuterol treatment using gas chromatography/mass spectrometry. Journal of Chromatography A, 2016, 1456, 242-248.	3.7	18
60	Characterization of the Promoter Regions of Two Sheep Keratin-Associated Protein Genes for Hair Cortex-Specific Expression. PLoS ONE, 2016, 11, e0153936.	2.5	12
61	Transcriptome analysis of mRNA and miRNA in skeletal muscle indicates an important network for differential Residual Feed Intake in pigs. Scientific Reports, 2015, 5, 11953.	3.3	137
62	RNA Sequencing Identifies Upregulated Kyphoscoliosis Peptidase and Phosphatidic Acid Signaling Pathways in Muscle Hypertrophy Generated by Transgenic Expression of Myostatin Propeptide. International Journal of Molecular Sciences, 2015, 16, 7976-7994.	4.1	15
63	miRNA Transcriptome of Hypertrophic Skeletal Muscle with Overexpressed Myostatin Propeptide. BioMed Research International, 2014, 2014, 1-19.	1.9	12
64	The Inflammation-Related Gene S100A12 Is Positively Regulated by C/EBP \hat{I}^2 and AP-1 in Pigs. International Journal of Molecular Sciences, 2014, 15, 13802-13816.	4.1	8
65	Interactome Mapping Reveals Important Pathways in Skeletal Muscle Development of Pigs. International Journal of Molecular Sciences, 2014, 15, 21788-21802.	4.1	3
66	Pseudorabies viral replication is inhibited by a novel target of miR-21. Virology, 2014, 456-457, 319-328.	2.4	40
67	Molecular characterization, induced expression, and transcriptional regulation of porcine S100A12 gene. Molecular Immunology, 2010, 47, 1601-1607.	2.2	16
68	Characterization analysis and polymorphism detection of the porcine Myd88 gene. Genetics and Molecular Biology, 2009, 32, 295-300.	1.3	5
69	Understanding Haemophilus parasuis infection in porcine spleen through a transcriptomics approach. BMC Genomics, 2009, 10, 64.	2.8	59