List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6196254/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Micro-Hydropower: Concept, System Design, and Innovations. , 2022, , 61-92.		0
2	Integrating Renewable Energy in Water Infrastructure: Global Trends and Future Outlook. , 2022, , 213-223.		1
3	Decentralized Green Water-Infrastructure Systems: Resilient and Sustainable Management Strategies for Building Water Systems. Springer Water, 2022, , 1-20.	0.3	1
4	New developments in premise plumbing: Integrative hydraulic and water quality modeling. AWWA Water Science, 2022, 4, .	2.1	12
5	Effects of the COVID-19 Pandemic on Water Utility Operations and Vulnerability. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	2.6	14
6	Energy and Water Quality Management in Water Distribution Networks Considering Variable Speed Pump and Tank Flush Scheduling. , 2022, , .		1
7	Water utility performance measurements using data envelopment analysis. , 2022, , 409-416.		0
8	Water demand forecasting time series data. , 2022, , 75-122.		0
9	Water quality modeling and analysis. , 2022, , 135-158.		0
10	Non-revenue water, what are their determinants?. , 2022, , 399-408.		0
11	Calibration and uncertainty analysis of hydraulic models. , 2022, , 159-186.		1
12	Optimal pump operation. , 2022, , 187-214.		0
13	Decision Analysis. , 2022, , 381-398.		0
14	Hydraulic transients in pipe systems. , 2022, , 215-236.		0
15	Drinking Water Pipeline Failure Analysis Based on Spatiotemporal Clustering and Poisson Regression. Journal of Pipeline Systems Engineering and Practice, 2021, 12, 05020006.	1.6	7
16	Robust and Transparent Method to Measure Water Infrastructure Performance in the United States. Journal of Water Resources Planning and Management - ASCE, 2021, 147, 06020015.	2.6	1
17	Is Rainwater Harvesting Worthwhile? A Benefit–Cost Analysis. Journal of Water Resources Planning and Management - ASCE, 2021, 147,	2.6	17
18	Water safety attitudes, risk perception, experiences, and education for households impacted by the 2018 Camp Fire, California. Natural Hazards, 2021, 108, 947-975.	3.4	17

#	Article	IF	CITATIONS
19	Embracing Analytics in the Water Industry. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	2.6	6
20	Water and Wastewater Systems and Utilities: Challenges and Opportunities during the COVID-19 Pandemic. Journal of Water Resources Planning and Management - ASCE, 2021, 147, .	2.6	31
21	Spatiotemporal and Machine Learning-Based Time Series Assessment of Drinking Water Quality Complaints in New York City. , 2021, , .		3
22	Introduction to the Special Issue "Socio-Hydrology: The New Paradigm in Resilient Water Management― Hydrology, 2021, 8, 138.	3.0	3
23	Fire & Water. Civil Engineering, 2021, 91, 42-47.	0.1	4
24	Effective well management using the J100 framework and methodology. AWWA Water Science, 2021, 3, e1254.	2.1	0
25	Wildfire caused widespread drinking water distribution network contamination. AWWA Water Science, 2020, 2, e1183.	2.1	53
26	Optimizing pump operations in water distribution systems: energy cost, greenhouse gas emissions and water quality. Water and Environment Journal, 2020, 34, 841-848.	2.2	6
27	Knowledge gaps and risks associated with premise plumbing drinking water quality. AWWA Water Science, 2020, 2, e1177.	2.1	26
28	Pressure-Based Analysis of Water Main Failures in California. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	2.6	12
29	Desalination: Concept and System Components. , 2020, , 3-27.		4
30	Development of a risk-based tool for groundwater well rehabilitation and replacement decisions. Journal of Water Supply: Research and Technology - AQUA, 2019, 68, 411-419.	1.4	5
31	Spatiotemporal and deterioration assessment of water main failures. AWWA Water Science, 2019, 1, e1159.	2.1	9
32	The human cost of global warming: Deadly landslides and their triggers (1995–2014). Science of the Total Environment, 2019, 682, 673-684.	8.0	231
33	Utilizing spatiotemporal based business risk exposure to analyze cast iron water main failures in California. Journal of Water Supply: Research and Technology - AQUA, 2019, 68, 111-120.	1.4	8
34	Development of a Water Infrastructure Performance Index for the USA. , 2019, , .		3
35	Twenty-first century urban water management: the imperative for holistic and cross-disciplinary approach. Journal of Environmental Studies and Sciences, 2019, 9, 90-95.	2.0	11
36	Assessing the Performance of a California Water Utility Using Two-Stage Data Envelopment Analysis. Journal of Water Resources Planning and Management - ASCE, 2018, 144, .	2.6	40

JUNESEOK LEE

#	Article	IF	CITATIONS
37	Sustainability Strategies at the Water–Energy Nexus: Renewable Energy and Decentralized Infrastructure. Journal - American Water Works Association, 2018, 110, 32-39.	0.3	9
38	Conceptual framework for decentralized green waterâ€infrastructure systems. Water and Environment Journal, 2018, 32, 112-117.	2.2	10
39	Hot Spot Analysis of Water Main Failures in California. Journal - American Water Works Association, 2018, 110, E39.	0.3	15
40	Determinants of non-revenue water for a water utility in California. Journal of Water Supply: Research and Technology - AQUA, 2018, 67, 270-278.	1.4	23
41	Uncertainty Estimation in Flood Inundation Mapping: An Application of Nonâ€parametric Bootstrapping. River Research and Applications, 2017, 33, 611-619.	1.7	27
42	Performance Assessment of a California Water Utility by Data Envelopment Analysis. , 2017, , .		1
43	Measuring water utility performance using nonparametric linear programming. Civil Engineering and Environmental Systems, 2017, 34, 206-220.	0.9	24
44	Survival Analysis of US Water Service Lines Utilizing a Nationwide Failure Data Set. Journal - American Water Works Association, 2017, 109, 13-21.	0.3	8
45	A Spatio-Temporal Water Mains Integrity Management Program for California. , 2017, , .		6
46	Increasing Fatal Landslides in Europe. , 2017, , 505-512.		1
47	A New Water Mains Integrity Management Program for California. , 2016, , .		0
48	Performance Assessment of a Water Utility in California. , 2016, , .		1
49	The Value of Rain: Benefit-Cost Analysis of Rainwater Harvesting Systems. Water Resources Management, 2016, 30, 4415-4428.	3.9	32
50	How do people make a decision on bottled or tap water? Preference elicitation with nonparametric bootstrap simulations. Water and Environment Journal, 2016, 30, 243-252.	2.2	21
51	Residential water demand analysis of a Lowâ€Income Rate Assistance Program in California, United States. Water and Environment Journal, 2016, 30, 49-61.	2.2	8
52	Decadal review of residential water demand analysis from a practical perspective. Water Practice and Technology, 2016, 11, 433-447.	2.0	16
53	Application of a rainfall-runoff model for regional-scale flood inundation mapping for the Langat River Basin. Water Practice and Technology, 2016, 11, 373-383.	2.0	5
54	Impacts of Metering on Residential Water Use in California. Journal - American Water Works Association, 2015, 107, E69.	0.3	15

#	Article	IF	CITATIONS
55	A New Model for Industry-University Partnerships. Journal - American Water Works Association, 2015, 107, 84-90.	0.3	24
56	Price elasticity of residential water demand in California. Journal of Water Supply: Research and Technology - AQUA, 2015, 64, 211-218.	1.4	16
57	Uncertainty analysis for extreme flood events in a semi-arid region. Natural Hazards, 2015, 78, 1947-1960.	3.4	28
58	A holistic decision-making framework for selecting domestic piping materials. Journal of Water Supply: Research and Technology - AQUA, 2015, 64, 326-332.	1.4	6
59	Drinking Water Distribution: Emerging Issues in Minor Water Systems. Handbook of Environmental Chemistry, 2014, , 95-123.	0.4	0
60	Residential Water Demand Analysis Due to Water Meter Installation in California. , 2013, , .		0
61	Price Elasticity Under Rate Structure Change and Low-Income Discounts in California. , 2013, , .		0
62	Homeowners' decisionâ€making in a premise plumbing failure–prone area. Journal - American Water Works Association, 2013, 105, E236.	0.3	21
63	Catalyzing Frontiers inWater-Climate-Society Research: A View from Early Career Scientists and Junior Faculty. Bulletin of the American Meteorological Society, 2012, 93, 477-484.	3.3	12
64	Hydraulic transients in plumbing systems. Water Science and Technology: Water Supply, 2012, 12, 619-629.	2.1	27
65	Application of EIO-LCA and LCIA to Premise Plumbing Materials. , 2012, , .		1
66	Historical Review of U.S. Residential Water Demand. , 2012, , .		8
67	Experimental Study of the Drinking Water Service Lines with Leaks. , 2011, , .		0
68	Introducing sustainability concepts in lower division engineering core courses. , 2011, , .		6
69	Case Study: Homeowner's Preference Trade-Offs towards Plumbing Systems in Pipe Failure Prone Area. , 2009, , .		1
70	Summary and Reflections on the Professional Career of G. V. Loganathan. Journal of Water Resources Planning and Management - ASCE, 2009, 135, 209-214.	2.6	0
71	Case Study: Preference Trade-Offs toward Home Plumbing Attributes and Materials. Journal of Water Resources Planning and Management - ASCE, 2009, 135, 237-243.	2.6	15
72	Copper Pinhole Failures: Plumbing Susceptibility and Management. Journal of Water Resources Planning and Management - ASCE, 2009, 135, 227-236.	2.6	14

#	Article	IF	CITATIONS
73	Low Pressure Propagation at Service Lines. , 2009, , .		1
74	Consumer Concerns and Preference-Tradeoffs in Home Plumbing Systems. , 2008, , .		1
75	Preference Trade-Offs in Choosing Domestic Plumbing Materials. , 2006, , 1.		0
76	Decision tool for optimal replacement of plumbing systems. Civil Engineering and Environmental Systems, 2005, 22, 189-204.	0.9	18
77	Analyzing Copper Plumbing Pipe Failures. , 2005, , .		0
78	Hourly water demand forecasting for micro water grids. Journal of Water Supply: Research and Technology - AQUA, 0, , jws2015144.	1.4	2