David A Norton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6195906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography, 2006, 15, 1-7.	5.8	1,528
2	Towards a Conceptual Framework for Restoration Ecology. Restoration Ecology, 1996, 4, 93-110.	2.9	1,009
3	Grazing effects on plant cover, soil and microclimate in fragmented woodlands in south-western Australia: implications for restoration. Austral Ecology, 2000, 25, 36-47.	1.5	293
4	Mistletoes as parasites: Host specificity and speciation. Trends in Ecology and Evolution, 1998, 13, 101-105.	8.7	226
5	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq1 1	0.784314 1.9	l rgBT /Over
6	Which plant traits determine abundance under longâ€ŧerm shifts in soil resource availability and grazing intensity?. Journal of Ecology, 2012, 100, 662-677.	4.0	107
7	Are systems with strong underlying abiotic regimes more likely to exhibit alternative stable states?. Oikos, 2005, 110, 409-416.	2.7	103
8	Species Invasions and the Limits to Restoration: Learning from the New Zealand Experience. Science, 2009, 325, 569-571.	12.6	100
9	Assessing the Success of Restoration Plantings in a Temperate New Zealand Forest. Restoration Ecology, 1999, 7, 298-308.	2.9	88
10	Contrasting effects of productivity and disturbance on plant functional diversity at local and metacommunity scales. Journal of Vegetation Science, 2013, 24, 834-842.	2.2	88
11	Fragmentation, Disturbance, and Plant Distribution: Mistletoes in Woodland Remnants in the Western Australian Wheatbelt. Conservation Biology, 1995, 9, 426-438.	4.7	70
12	Lessons in Ecosystem Management from Management of Threatened and Pest Loranthaceous Mistletoes in New Zealand and Australia. Lecciones de Manejo de Ecosistemas Manejo de Muerdagos Lorantaceos Amenazados y Plagas en Nueva Zelanda y Australia. Conservation Biology, 1997, 11, 759-769.	4.7	62
13	Biodiversity Offsets: Two New Zealand Case Studies and an Assessment Framework. Environmental Management, 2009, 43, 698-706.	2.7	46
14	Distribution and population structure of the loranthaceous mistletoesAlepis flavida, Peraxilla colensoi, andPeraxilla tetrapetalawithin two New ZealandNothofagusforests. New Zealand Journal of Botany, 1997, 35, 323-336.	1.1	36
15	Artificial canopy gaps accelerate restoration within an exotic <i>Pinus radiata</i> plantation. Restoration Ecology, 2016, 24, 336-345.	2.9	33
16	Fire and Vegetation in a Temperate Peat Bog: Implications for the Management of Threatened Species. Conservation Biology, 2003, 17, 138-148.	4.7	32
17	Why might roadside mulgas be better mistletoe hosts?. Austral Ecology, 1999, 24, 193-198.	1.5	29
18	How do we restore New Zealand's biological heritage by 2050?. Ecological Management and Restoration, 2016, 17, 170-179.	1.5	28

DAVID A NORTON

#	Article	IF	CITATIONS
19	Floristics and structure of mire-forest ecotones, west coast South Island, New Zealand. Journal of the Royal Society of New Zealand, 1989, 19, 31-42.	1.9	24
20	Biodegradation of Soluble Organic Matter as Affected by Land-Use and Soil Depth. Soil Science Society of America Journal, 2012, 76, 1667-1677.	2.2	21
21	Different arbuscular mycorrhizae and competition with an exotic grass affect the growth of Podocarpus cunninghamii Colenso cuttings. New Forests, 2013, 44, 183-195.	1.7	20
22	Growth and competitiveness of the New Zealand tree species Podocarpus cunninghamii is reduced by ex-agricultural AMF but enhanced by forest AMF. Soil Biology and Biochemistry, 2011, 43, 339-345.	8.8	19
23	Upscaling restoration of native biodiversity: A New Zealand perspective. Ecological Management and Restoration, 2018, 19, 26-35.	1.5	19
24	The effect of plant light environment on mycorrhizal colonisation in fieldâ€grown seedlings of podocarpâ€angiosperm forest tree species. New Zealand Journal of Botany, 2002, 40, 65-72.	1.1	16
25	Overâ€collecting: an overlooked factor in the decline of plant taxa. Taxon, 1994, 43, 181-185.	0.7	15
26	When are alternative stable states more likely to occur?. Oikos, 2006, 113, 357-362.	2.7	14
27	The roles of nonâ€production vegetation in agroecosystems: A research framework for filling process knowledge gaps in a socialâ€ecological context. People and Nature, 2020, 2, 292-304.	3.7	14
28	The potential for biodiversity offsetting to fund effective invasive species control. Conservation Biology, 2015, 29, 5-11.	4.7	13
29	Germination and seedling growth of an endangered native broom,Chordospartium muritaiA.W.Purdie (Fabaceae), found in Marlborough, South Island, New Zealand. New Zealand Journal of Botany, 1996, 34, 199-204.	1.1	12
30	Persistence of a significant population of rare Canterbury mudfish (<i>Neochanna burrowsius</i>) in a hydrologically isolated catchment. New Zealand Journal of Marine and Freshwater Research, 2007, 41, 309-316.	2.0	12
31	The distribution of pine mistletoe (<i>Viscum album</i> ssp. <i>austriacum</i>) in Scots pine (<i>Pinus) Tj ETQq1 20-28.</i>	1 0.7843 1.4	314 rgBT /O 12
32	Contrasts in crown development of the mistletoesAlepis flavida(Hook. f.) Tiegh. andPeraxilla tetrapetala(L. f.) Tiegh. (Loranthaceae) parasitic onNothofagus solandri(Hook. f.) Oerst., Craigieburn Ecological District, New Zealand. New Zealand Journal of Botany, 1994, 32, 497-508.	1.1	11
33	Development of non-destructive age indices for three New Zealand loranthaceous mistletoes. New Zealand Journal of Botany, 1997, 35, 337-343.	1.1	11
34	Can exotic pine trees assist in restoration?. Applied Vegetation Science, 2013, 16, 169-170.	1.9	10
35	Achieving win-win outcomes for pastoral farming and biodiversity conservation in New Zealand. New Zealand Journal of Ecology, 2020, 44, .	1.1	10
36	Ultimate drivers of native biodiversity change in agricultural systems. F1000Research, 2013, 2, 214.	1.6	9

DAVID A NORTON

#	Article	IF	CITATIONS
37	Restoring mature-phase forest tree species through enrichment planting in New Zealand's lowland landscapes. New Zealand Journal of Ecology, 2020, 44, .	1.1	8
38	Growth response to light of <i>Carex inopinata</i> Cook, an endangered New Zealand sedge. New Zealand Journal of Botany, 1992, 30, 429-433.	1.1	7
39	Relationships between pteridophytes and topography in a lowland South Westland podocarp forest. New Zealand Journal of Botany, 1994, 32, 401-408.	1.1	7
40	Crownâ€stem dimension relationships in two New Zealand native forests. New Zealand Journal of Botany, 2005, 43, 673-678.	1.1	7
41	Post-Fire Resprouting in New Zealand Woody Vegetation: Implications for Restoration. Forests, 2020, 11, 269.	2.1	7
42	Comment on "Why Are There So Many Species of Herbivorous Insects in Tropical Rainforests?". Science, 2007, 315, 1666b-1666b.	12.6	6
43	Canopy manipulation as a tool for restoring mature forest conifers under an earlyâ€successional angiosperm canopy. Restoration Ecology, 2019, 27, 31-37.	2.9	6
44	Farm scale assessment of the impacts of biodiversity enhancement on the financial and environmental performance of mixed livestock farms in New Zealand. Agricultural Systems, 2021, 187, 103007.	6.1	6
45	Effect of grazing exclusion on the woody weed <i>Rosa rubiginosa</i> in high country short tussock grasslands. New Zealand Journal of Agricultural Research, 2009, 52, 123-128.	1.6	5
46	Substrate modification for enhanced native forest restoration, Reefton. Ecological Management and Restoration, 2013, 14, 147-150.	1.5	4
47	Early response of late-successional species to nurse shrub manipulations in degraded high country, New Zealand. New Forests, 2020, 51, 849-868.	1.7	3
48	Regeneration of native woody species following artificial gap formation in an earlyâ€successional forest in New Zealand. Ecological Management and Restoration, 2020, 21, 229-236.	1.5	2
49	The significance of sheep and beef farms to conservation of native vegetation in New Zealand. New Zealand Journal of Ecology, 0, , .	1.1	2
50	Ecological Factors Preventing Restoration of Degraded Short Tussock Landscapes in New Zealand's Dryland Zone. Open Agriculture, 2017, 2, 442-452.	1.7	1
51	A substantial northward extension of the range of Dracophyllum fiordense W.R.B. Oliv. (Ericaceae), Westland, New Zealand. New Zealand Journal of Botany, 2018, 56, 430-437.	1.1	1
52	Ecology of aRanunculus lyalliipopulation at its dryland distributional limit in Canterbury, New Zealand. New Zealand Journal of Botany, 2007, 45, 81-85.	1.1	0
53	Sheep grazing reducesHieracium pilosellaflowering. New Zealand Journal of Agricultural Research, 2009, 52, 129-131.	1.6	0
54	Restore, regenerate, revegetate: Restoring ecological processes, ecosystems and landscapes in a changing world. Ecological Management and Restoration, 2018, 19, 3-5.	1.5	0

#	Article	IF	CITATIONS
55	The New Zealand Beef and Sheep Sector's Contribution to Biodiversity and Carbon Sequestration. Proceedings (mdpi), 2019, 8, 48.	0.2	0