List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6195629/publications.pdf Version: 2024-02-01

DAVAJEL KOVSIL SKI

#	Article	IF	CITATIONS
1	The EcCLC antiporter embedded in lipidic liquid crystalline films – molecular dynamics simulations and electrochemical methods. Physical Chemistry Chemical Physics, 2022, 24, 3066-3077.	1.3	2
2	Methods of Measuring Mitochondrial Potassium Channels: A Critical Assessment. International Journal of Molecular Sciences, 2022, 23, 1210.	1.8	11
3	Synthesis and Characterization of Magnetic Drug Carriers Modified with Tb3+ Ions. Nanomaterials, 2022, 12, 795.	1.9	12
4	Photocatalytic Degradation of Antibiotics by Superparamagnetic Iron Oxide Nanoparticles. Tetracycline Case. Catalysts, 2021, 11, 1243.	1.6	23
5	Hybrid Radiobioconjugated Superparamagnetic Iron Oxide-Based Nanoparticles for Multimodal Cancer Therapy. Pharmaceutics, 2021, 13, 1843.	2.0	17
6	Photosensitive Thin Films Based on Drop Cast and Langmuir-Blodgett Hydrophilic and Hydrophobic CdS Nanoparticles. Nanomaterials, 2020, 10, 2437.	1.9	7
7	Trastuzumab Conjugated Superparamagnetic Iron Oxide Nanoparticles Labeled with 225Ac as a Perspective Tool for Combined I±-Radioimmunotherapy and Magnetic Hyperthermia of HER2-Positive Breast Cancer. Molecules, 2020, 25, 1025.	1.7	55
8	Tetracycline Photocatalytic Degradation under CdS Treatment. Journal of Marine Science and Engineering, 2020, 8, 483.	1.2	41
9	Lanthanide-Doped SPIONs Bioconjugation with Trastuzumab for Potential Multimodal Anticancer Activity and Magnetic Hyperthermia. Nanomaterials, 2020, 10, 288.	1.9	25
10	Lipidic Liquid Crystalline Cubic Phases and Magnetocubosomes as Methotrexate Carriers. Nanomaterials, 2019, 9, 636.	1.9	16
11	Magnetic field-assisted selective delivery of doxorubicin to cancer cells using magnetoliposomes as drug nanocarriers. Nanotechnology, 2019, 30, 315101.	1.3	25
12	Synthesis and characterization of Gd3+- and Tb3+-doped iron oxide nanoparticles for possible endoradiotherapy and hyperthermia. Journal of Magnetism and Magnetic Materials, 2019, 479, 50-58.	1.0	14
13	Synthesis and Characterization of Tbâ€Đoped Nanoferrites. ChemNanoMat, 2018, 4, 231-242.	1.5	5
14	A self-powered biosensing device with an integrated hybrid biofuel cell for intermittent monitoring of analytes. Biosensors and Bioelectronics, 2018, 102, 383-388.	5.3	27
15	Magnetic-field-induced orientation of fructose dehydrogenase on iron oxide nanoparticles for enhanced direct electron transfer. Electrochemistry Communications, 2018, 93, 66-70.	2.3	13
16	Easy Synthesis and Characterization of Holmium-Doped SPIONs. Nanomaterials, 2018, 8, 430.	1.9	30
17	Monoolein Cubic Phase Gels and Cubosomes Doped with Magnetic Nanoparticles–Hybrid Materials for Controlled Drug Release. ACS Applied Materials & Interfaces, 2017, 9, 2796-2805.	4.0	55
18	Physicochemical properties and in vitro cytotoxicity of iron oxide-based nanoparticles modified with antiangiogenic and antitumor peptide A7R. Journal of Nanoparticle Research, 2017, 19, 160.	0.8	11

#	Article	IF	CITATIONS
19	Hydrophilic iron oxide nanoparticles probe the organization of biomimetic layers: electrochemical and spectroscopic evidence. Electrochimica Acta, 2016, 209, 671-681.	2.6	9
20	Magnetoliposomes as Potential Carriers of Doxorubicin to Tumours. Chemistry - A European Journal, 2016, 22, 17715-17724.	1.7	31
21	Probing the interactions of mitoxantrone with biomimetic membranes with electrochemical and spectroscopic techniques. Electrochimica Acta, 2015, 165, 430-442.	2.6	14
22	New trends in the electrochemical sensing of dopamine. Analytical and Bioanalytical Chemistry, 2013, 405, 3753-3771.	1.9	373
23	Solid-core and hollow magnetic nanostructures: Synthesis, surface modifications and biological applications. Bioelectrochemistry, 2013, 93, 2-14.	2.4	14
24	Magnetic-Nanoparticle-Decorated Polypyrrole Microvessels: Toward Encapsulation of mRNA Cap Analogues. Biomacromolecules, 2013, 14, 1867-1876.	2.6	17
25	Partitioning of doxorubicin into Langmuir and Langmuir–Blodgett biomimetic mixed monolayers: Electrochemical and spectroscopic studies. Journal of Electroanalytical Chemistry, 2013, 710, 59-69.	1.9	9
26	Progress in Targeting Tumor Cells by Using Drug-Magnetic Nanoparticles Conjugate. Biomacromolecules, 2013, 14, 828-833.	2.6	36
27	Structure-Dependent Complexation of Fe ³⁺ by Anthracyclines. 2. The Roles of Methoxy and Daunosamine Functionalities. Journal of Physical Chemistry B, 2013, 117, 6868-6873.	1.2	8
28	Structure-Dependent Complexation of Fe3+by Anthracyclines. 1. The Importance of Pendent Hydroxyl Functionality. Journal of Physical Chemistry B, 2013, 117, 6859-6867.	1.2	10
29	Interactions of Doxorubicin with Organized Interfacial Assemblies. 2. Spectroscopic Characterization. Langmuir, 2013, 29, 14570-14579.	1.6	9
30	Interactions of Doxorubicin with Organized Interfacial Assemblies. 1. Electrochemical Characterization. Langmuir, 2013, 29, 14560-14569.	1.6	13
31	Doxorubicin is a photocatalyst for the generation of H2O2. RSC Advances, 2012, 2, 4059.	1.7	6
32	Photoinduced Reactivity of Doxorubicin: Catalysis and Degradation. Journal of Physical Chemistry A, 2012, 116, 4330-4337.	1.1	40
33	Adsorption of Doxorubicin onto Citrate-Stabilized Magnetic Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 5598-5609.	1.5	58
34	Photopolymerized Polypyrrole Microvessels. Chemistry - A European Journal, 2012, 18, 310-320.	1.7	30
35	Interactions of Doxorubicin with Self-Assembled Monolayer-Modified Electrodes: Electrochemical, Surface Plasmon Resonance (SPR), and Gravimetric Studies. Langmuir, 2011, 27, 1100-1107.	1.6	26
36	Pyrene-Loaded Polypyrrole Microvessels. Langmuir, 2011, 27, 12720-12729.	1.6	16

#	Article	IF	CITATIONS
37	Polypyrrole microcapsules as a transducer for ion-selective electrodes. Electrochemistry Communications, 2010, 12, 1568-1571.	2.3	35
38	Toluene-Filled Polypyrrole Microvessels: Entrapment and Dynamics of Encapsulated Perylene. Journal of Physical Chemistry B, 2010, 114, 14890-14896.	1.2	13
39	Synthesis and functionalization of magnetic nanoparticles with covalently bound electroactive compound doxorubicin. Electrochimica Acta, 2009, 54, 5065-5070.	2.6	30
40	Encapsulation of laccase in a conducting polymer matrix: A simple route towards polypyrrole microcontainers. Synthetic Metals, 2009, 159, 1731-1738.	2.1	35
41	Design and Characterization of Novel Tether Layer for Coupling of a Bilayer Lipid Membrane to the Surface of Gold. Langmuir, 2009, 25, 9337-9345.	1.6	16
42	Influence of a Magnetic Nanoparticle As a Drug Carrier on the Activity of Anticancer Drugs: Interactions of Double Stranded DNA and Doxorubicin Modified with a Carrier. Analytical Chemistry, 2009, 81, 7474-7483.	3.2	30
43	Tyrosine side chains as an electrochemical probe of stacked β-sheet protein conformations. Bioelectrochemistry, 2008, 72, 34-40.	2.4	22
44	Interrogating Interfacial Organization in Planar Bilayer Structures. Langmuir, 2008, 24, 8785-8793.	1.6	12
45	Immobilization of Laccase on Conducting Substrates by ZirconiumPhosphonate-Carboxylate Coordination Chemistry. ECS Meeting Abstracts, 2006, , .	0.0	Ο
46	Design, synthesis and characterization of monomolecular interfacial layers. Bioelectrochemistry, 2005, 66, 9-21.	2.4	2
47	Spectroscopic and electrochemical characterization of interfacial biomimetic assemblies on electrochemically generated gold oxide surfaces. Bioelectrochemistry, 2005, 66, 71-77.	2.4	8
48	Probing Interfacial Organization in Surface Monolayers Using Tethered Pyrene. 2. Spectroscopy and Motional Freedom of the Adsorbates. Journal of Physical Chemistry B, 2005, 109, 15822-15827.	1.2	9
49	Use of Zirconiumâ^'Phosphateâ^'Carbonate Chemistry to Immobilize Polycyclic Aromatic Hydrocarbons on Boron-Doped Diamond. Langmuir, 2005, 21, 8802-8808.	1.6	43
50	Probing Interfacial Organization in Surface Monolayers Using Tethered Pyrene. 1. Structural Mediation of Electron and Proton Access to Adsorbates. Journal of Physical Chemistry B, 2005, 109, 15812-15821.	1.2	40
51	Incorporation of Na+,K+-ATP-ase into the Thiolipid Biomimetic Assemblies via the Fusion of Proteoliposomes. Langmuir, 2004, 20, 11127-11133.	1.6	21
52	Covalently and ionically immobilised monomers on the gold surface. Synthetic Metals, 2004, 140, 29-35.	2.1	12
53	Synthesis and Characterization of Amphiphilic Biomimetic Assemblies at Electrochemically Active Surfaces. Langmuir, 2003, 19, 3875-3882.	1.6	21
54	Gauging Molecular Interactions between Substrates and Adsorbates. Substrate Mediation of Surface-Bound Chromophore Vibronic Coupling. Journal of Physical Chemistry B, 2003, 107, 4100-4106.	1.2	20

#	Article	IF	CITATIONS
55	Covalent Adlayer Growth on a Diamond Thin Film Surface. Journal of the American Chemical Society, 2003, 125, 12726-12728.	6.6	20
56	Electrochemical Preparation of Conducting Polymer Microelectrodes. Journal of Physical Chemistry B, 2002, 106, 10349-10354.	1.2	20
57	Electrochemical studies of blocking properties of solid supported tethered lipid membranes on gold. Bioelectrochemistry, 2002, 56, 179-184.	2.4	19
58	Preparation of ultrathin films of polyaniline and its derivatives by electrochemical deposition on thiol modified gold. Journal of Electroanalytical Chemistry, 2002, 533, 145-152.	1.9	9
59	Covalently Immobilized 1,4-Phenylenediamine on 11-Mercaptoundecanoic Acid-Coated Gold:Â Effect of Surface-Confined Monomers on the Chemical in Situ Deposition of Polyaniline and Its Derivatives. Langmuir, 2001, 17, 7093-7101.	1.6	34
60	Polymer sandwiches: polyaniline films deposited on thiol-coated gold by chemical in situ method. Thin Solid Films, 2001, 396, 131-137.	0.8	27
61	Bulk- and surface-initiated chemical in situ polymerisation of 2,5-dimethoxyaniline and 2-methoxyaniline on thiol-coated gold electrodes. Electrochimica Acta, 2001, 46, 3963-3971.	2.6	27
62	A voltammetric study of monolayers and bilayers self-assembled on metal electrodes. Electrochimica Acta, 2000, 45, 1885-1892.	2.6	49
63	Functionalisation of monolayer-modified electrodes by covalent coupling of o-phenylenediamine monomer molecules. Electrochimica Acta, 2000, 46, 231-237.	2.6	15
64	Comparative Study of the Electrodeposition of Poly(3-octylthiophene) Films on Gold Electrodes:Â Bare and Modified with Dodecanethiol Monomolecular Layer. Langmuir, 2000, 16, 7962-7967.	1.6	19
65	Incorporation of redox molecules into the monolayer modified electrodes. Materials Science and Engineering C, 1999, 8-9, 551-557.	3.8	17
66	Redox reactions on TCNQ-modified self-assembled monomolecular films. Advanced Materials for Optics and Electronics, 1998, 8, 121-128.	0.5	14
67	Electrochemical deposition of poly(o-anisidine) and polypyrrole at octadecanethiol coated gold electrodes. Thin Solid Films, 1998, 330, 167-172.	0.8	25
68	Capacitance characteristics of self-assembled monolayers on gold electrode. Bioelectrochemistry, 1998, 44, 163-168.	1.0	23
69	Three-probe voltammetric characterisation of octadecanethiol self-assembled monolayer integrity on gold electrodes. Journal of Electroanalytical Chemistry, 1997, 424, 61-67.	1.9	80
70	Partial Electron Transfer in Octadecanethiol Binding to Gold. Langmuir, 1994, 10, 4286-4294.	1.6	44
71	Redox reactions on modified bilayer lipid membranes for biosensing device. Advanced Materials for Optics and Electronics, 1993, 2, 107-113.	0.5	3
72	Electrochemical properties of bilayer lipid membranes modified with metal porphyrins. Bioelectrochemistry, 1990, 23, 93-100.	1.0	3

#	Article	IF	CITATIONS
73	Kinetic model of quaternary ammonium cation transport through the human red blood cell membrane/electrolyte solution interface in vitro. Bioelectrochemistry, 1990, 23, 129-139.	1.0	0
74	Electrochemical properties of bilayer lipid membranes modified with metal porphyrins. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 298, 93-100.	0.3	0
75	Voltammetric studies of electron-conducting modified bilayer lipid membranes. Bioelectrochemistry, 1986, 16, 185-191.	1.0	12
76	Electrochemical properties of the cell membrane-electrolyte solution interface from microelectrophoretic and contact potential difference measurements. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 100, 71-76.	0.3	6