
Clinton E Canal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6195552/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Need To Improve Reporting of the Pharmacological Action of New Molecules. ACS Chemical Neuroscience, 2022, , .	3.5	0
2	"Selective―serotonin 5-HT2A receptor antagonists. Biochemical Pharmacology, 2022, 200, 115028.	4.4	28
3	Spontaneous seizures in adult Fmr1 knockout mice: FVB.129P2-Pde6b+ Tyr Fmr1/J. Epilepsy Research, 2022, 182, 106891.	1.6	6
4	Evaluation of Perineuronal Nets and Their Regulation by Serotonin 5â€HT 7 Receptors in a Juvenile Fmr1 Knockout Mouse Model of Fragile X Syndrome. FASEB Journal, 2021, 35, .	0.5	0
5	Evaluation of Serotonin 5â€HT 1A , 5â€HT 2A , and 5â€HT 2C Receptors and the Serotonin Transporter in an Fmr1 Knockout Mouse Model of Fragile X Syndrome. FASEB Journal, 2021, 35, .	0.5	0
6	Activity of <i>Mitragyna speciosa</i> ("Kratomâ€) Alkaloids at Serotonin Receptors. Journal of Medicinal Chemistry, 2021, 64, 13510-13523.	6.4	30
7	Evaluation of lorcaserin as an anticonvulsant in juvenile Fmr1 knockout mice. Epilepsy Research, 2021, 175, 106677.	1.6	7
8	Synthesis of novel 5-substituted-2-aminotetralin analogs: 5-HT1A and 5-HT7 G protein-coupled receptor affinity, 3D-QSAR and molecular modeling. Bioorganic and Medicinal Chemistry, 2020, 28, 115262.	3.0	14
9	Structure–Activity Relationship Study of Psychostimulant Synthetic Cathinones Reveals Nanomolar Antagonist Potency of α-Pyrrolidinohexiophenone at Human Muscarinic M ₂ Receptors. ACS Chemical Neuroscience, 2020, 11, 960-968.	3.5	9
10	(<i>S</i>)-5-(2â€ ² -Fluorophenyl)- <i>N</i> , <i>N</i> -dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine, a Serotonin Receptor Modulator, Possesses Anticonvulsant, Prosocial, and Anxiolytic-like Properties in an <i>Fmr1</i> Knockout Mouse Model of Fragile X Syndrome and Autism Spectrum Disorder. ACS Pharmacology and Translational Science, 2020, 3, 509-523.	4.9	18
11	Exploring 5â€HT 2 Receptors as Targets for Treating Epilepsy in Fragile X Syndrome: A Preclinical Study of Fmr1 Knockâ€out Mice. FASEB Journal, 2020, 34, 1-1.	0.5	0
12	Sex Differences in an Fmr1 Knockâ€out Mouse Model of Fragile X Syndrome. FASEB Journal, 2020, 34, 1-1.	0.5	0
13	Structure Activity Relationship Studies of Psychostimulant Synthetic Cathinones Reveal Nanomolar Antagonist Potency of αâ€Pyrrolidinohexiophenone (αâ€PHP) at Human Muscarinic M 2 Receptors. FASEB Journal, 2020, 34, 1-1.	0.5	0
14	NeuroChat with Professor Clinton E. Canal. ACS Chemical Neuroscience, 2020, 11, 3485-3487.	3.5	0
15	Ligand-directed serotonin 5-HT2C receptor desensitization and sensitization. European Journal of Pharmacology, 2019, 848, 131-139.	3.5	8
16	M100907 and BD 1047 attenuate the acute toxic effects of methamphetamine. NeuroToxicology, 2019, 74, 91-99.	3.0	8
17	The synthetic cathinone psychostimulant αâ€PPP antagonizes serotonin 5â€HT _{2A} receptors: In vitro and in vivo evidence. Drug Testing and Analysis, 2019, 11, 990-998.	2.6	8
18	Can pimavanserin help patients with Parkinson disease psychosis?. JAAPA: Official Journal of the American Academy of Physician Assistants, 2019, 32, 44-45.	0.3	3

CLINTON E CANAL

#	Article	IF	CITATIONS
19	Effects of the second-generation "bath salt" cathinone alpha-pyrrolidinopropiophenone (α-PPP) on behavior and monoamine neurochemistry in male mice. Psychopharmacology, 2019, 236, 1107-1117.	3.1	24
20	The Synthetic Cathinone αâ€PPP Acts as a Competitive Antagonist at Human 5â€HT 2A Receptors. FASEB Journal, 2019, 33, 664.17.	0.5	0
21	FPT, a Novel 5â€HT 7 and 5â€HT 1A Partial Agonist, Treats Neuropsychiatric Symptoms Modeled in Fmr1 Knockout Mice. FASEB Journal, 2019, 33, 667.2.	0.5	0
22	Assessment of Brain Serotonin Receptors in an Fmr1 Knockout Mouse Model of Fragile X Syndrome. FASEB Journal, 2019, 33, 667.1.	0.5	0
23	Serotonergic Psychedelics: Experimental Approaches for Assessing Mechanisms of Action. Handbook of Experimental Pharmacology, 2018, 252, 227-260.	1.8	23
24	Classics in Chemical Neuroscience: Aripiprazole. ACS Chemical Neuroscience, 2017, 8, 1135-1146.	3.5	80
25	The serotonin 5-HT _{2C} receptor and the non-addictive nature of classic hallucinogens. Journal of Psychopharmacology, 2017, 31, 127-143.	4.0	43
26	Mutagenesis Analysis Reveals Distinct Amino Acids of the Human Serotonin 5-HT _{2C} Receptor Underlying the Pharmacology of Distinct Ligands. ACS Chemical Neuroscience, 2017, 8, 28-39.	3.5	9
27	An Orally Active Phenylaminotetralin-Chemotype Serotonin 5-HT ₇ and 5-HT _{1A} Receptor Partial Agonist That Corrects Motor Stereotypy in Mouse Models. ACS Chemical Neuroscience, 2015, 6, 1259-1270.	3.5	31
28	Novel 4-substituted-N,N-dimethyltetrahydronaphthalen-2-amines: synthesis, affinity, and in silico docking studies at serotonin 5-HT2-type and histamine H1 G protein-coupled receptors. Bioorganic and Medicinal Chemistry, 2015, 23, 1588-1600.	3.0	4
29	A Novel Aminotetralin-Type Serotonin (5-HT) _{2C} Receptor-Specific Agonist and 5-HT _{2A} Competitive Antagonist/5-HT _{2B} Inverse Agonist with Preclinical Efficacy for Psychoses. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 310-318.	2.5	20
30	Development of novel serotonin 7â€ŧargeting compounds based on the 2â€dimethylaminotetralin scaffold (1059.13). FASEB Journal, 2014, 28, 1059.13.	0.5	1
31	Support for 5-HT2C receptor functional selectivity inÂvivo utilizing structurally diverse, selective 5-HT2C receptor ligands and the 2,5-dimethoxy-4-iodoamphetamine elicited head-twitch response model. Neuropharmacology, 2013, 70, 112-121.	4.1	53
32	Molecular Pharmacology and Ligand Docking Studies Reveal a Single Amino Acid Difference between Mouse and Human Serotonin 5-HT2A Receptors That Impacts Behavioral Translation of Novel 4-Phenyl-2-dimethylaminotetralin Ligands. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 705-716.	2.5	19
33	Human serotonin 5â€HT _{2C} G proteinâ€coupled receptor homology model from the β ₂ adrenoceptor structure: Ligand docking and mutagenesis studies. International Journal of Quantum Chemistry, 2012, 112, 140-149.	2.0	10
34	Molecular determinants for ligand binding at serotonin 5â€HT _{2A} and 5â€HT _{2C} GPCRs: Experimental affinity results analyzed by molecular modeling and ligand docking studies. International Journal of Quantum Chemistry, 2012, 112, 3807-3814.	2.0	17
35	Drug discovery targeting human 5-HT2C receptors: Residues S3.36 and Y7.43 impact ligand—Binding pocket structure via hydrogen bond formation. European Journal of Pharmacology, 2011, 673, 1-12.	3.5	23
36	The serotonin 2C receptor potently modulates the head-twitch response in mice induced by a phenethylamine hallucinogen. Psychopharmacology, 2010, 209, 163-174.	3.1	89

CLINTON E CANAL

#	Article	IF	CITATIONS
37	Impact of RNA editing on functions of the serotonin 2C receptor in vivo. Frontiers in Neuroscience, 2010, 4, 26.	2.8	33
38	RNA editing of the serotonin 2C receptor and expression of Gα _q protein: genetic mouse models do not support a role for regulation or compensation. Journal of Neurochemistry, 2009, 108, 1136-1142.	3.9	6
39	Intra-amygdala injections of CREB antisense impair inhibitory avoidance memory: Role of norepinephrine and acetylcholine. Learning and Memory, 2008, 15, 677-686.	1.3	22
40	Amnesia produced by altered release of neurotransmitters after intraamygdala injections of a protein synthesis inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12500-12505.	7.1	95
41	Different temporal profiles of amnesia after intra-hippocampus and intra-amygdala infusions of anisomycin Behavioral Neuroscience, 2007, 121, 732-741.	1.2	23
42	Modulation of memory with septal injections of morphine and glucose: Effects on extracellular glucose levels in the hippocampus. Physiology and Behavior, 2006, 87, 298-303.	2.1	32
43	Glucose injections into the dorsal hippocampus or dorsolateral striatum of rats prior to T-maze training: Modulation of learning rates and strategy selection. Learning and Memory, 2005, 12, 367-374.	1.3	45
44	Increases in extracellular fluid glucose levels in the rat hippocampus following an anesthetic dose of pentobarbital or ketamine–xylazine: an in vivo microdialysis study. Physiology and Behavior, 2005, 84, 245-250.	2.1	23