
Jason Henry Ideker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6194820/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combining reliable performance testing and binder properties to determine preventive measures for alkali-silica reaction. Cement and Concrete Research, 2022, 151, 106641.	4.6	12
2	Using electrical resistivity to determine the efficiency of supplementary cementitious materials to prevent alkali-silica reaction in concrete. Cement and Concrete Composites, 2022, 125, 104282.	4.6	20
3	The efficacy of portland-limestone cements with supplementary cementitious materials to prevent alkali-silica reaction. Cement, 2022, 8, 100031.	0.9	4
4	Validated Uniaxial Stress–Strain Model for Cyclic Analysis of High-Performance Fiber-Reinforced Cementitious Composites. Journal of Structural Engineering, 2022, 148, .	1.7	0
5	Comparison of thresholding techniques for quantifying portland cement hydrates using synchrotron microtomography. Construction and Building Materials, 2021, 266, 121109.	3.2	6
6	Evaluation of Current ASTM Standards for ASR Prevention When Fine Lightweight Aggregates Are Used. Advances in Civil Engineering Materials, 2021, 10, 396-411.	0.2	0
7	Using Supplementary Cementitious Materials to Mitigate Alkali-Silica Reaction in Concrete with Recycled-Concrete Aggregate. Journal of Materials in Civil Engineering, 2020, 32, .	1.3	17
8	Divergence between Performance in the Field and Laboratory Test Results for Alkali-Silica Reaction. Transportation Research Record, 2020, 2674, 120-134.	1.0	11
9	Tension and Cyclic Behavior of High-Performance Fiber-Reinforced Cementitious Composites. Journal of Materials in Civil Engineering, 2019, 31, 04019220.	1.3	9
10	Calcium Aluminate Cements. , 2019, , 537-584.		21
11	Use of iodine for improving phase quantification using x-ray tomography. Cement and Concrete Research, 2019, 116, 102-112.	4.6	7
12	A mechanistic study on mitigation of alkali-silica reaction by fine lightweight aggregates. Cement and Concrete Research, 2018, 104, 13-24.	4.6	20
13	Evaluation of a Procedure for Determining the Converted Strength of Calcium Aluminate Cement Concrete. Journal of Testing and Evaluation, 2018, 46, 1659-1672.	0.4	4
14	Quantification of synthesized hydration products using synchrotron microtomography and spectral analysis. Construction and Building Materials, 2017, 157, 476-488.	3.2	9
15	Influence of aggregate type on conversion and strength in calcium aluminate cement concrete. Cement and Concrete Research, 2017, 100, 284-296.	4.6	44
16	Synergistic effects of ASR and fly ash on the corrosion characteristics of RC systems. Construction and Building Materials, 2017, 153, 647-655.	3.2	9
17	Influence of Alkali-Silica Reaction Reactivity on Corrosion in Reinforced Concrete. ACI Materials Journal, 2017, 114, .	0.3	3
18	Development of shrinkage limit specification for high performance concrete used in bridge decks. Cement and Concrete Composites, 2016, 72, 17-26.	4.6	8

JASON HENRY IDEKER

#	Article	IF	CITATIONS
19	A COMSOL–GEMS interface for modeling coupled reactive-transport geochemical processes. Computers and Geosciences, 2016, 92, 79-89.	2.0	45
20	Evaluation of FLWA and SRAs on autogenous deformation and long-term drying shrinkage of high performance concrete. Construction and Building Materials, 2016, 119, 53-60.	3.2	43
21	ICAAR 1974–2016 conferences for examination of AAR in concrete. Proceedings of Institution of Civil Engineers: Construction Materials, 2016, 169, 119-127.	0.7	1
22	Cracking susceptibility of concrete made with coarse recycled concrete aggregates. Construction and Building Materials, 2016, 102, 802-810.	3.2	58
23	Durability assessment of high-performance concrete with SRAs and FLWAs. Cement and Concrete Composites, 2015, 57, 94-101.	4.6	19
24	Alkali–silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps. Cement and Concrete Research, 2015, 76, 130-146.	4.6	369
25	New Considerations in Predicting Mitigation of Alkali-Silica Reaction Based on Fly Ash Chemistry. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	17
26	Applicability of the Accelerated Mortar Bar Test for Alkali-Silica Reactivity of Recycled Concrete Aggregates. Advances in Civil Engineering Materials, 2013, 2, 20120030.	0.2	9
27	Simple Procedure for Determining Long-Term Chemical Shrinkage for Cementitious Systems Using Improved Standard Chemical Shrinkage Test. Journal of Materials in Civil Engineering, 2012, 24, 989-995.	1.3	9
28	Advances in alternative cementitious binders. Cement and Concrete Research, 2011, 41, 1232-1243.	4.6	1,232
29	The current state of the accelerated concrete prism test. Cement and Concrete Research, 2010, 40, 550-555.	4.6	46
30	Effect of environmental conditions on expansion in concrete due to alkali–silica reaction (ASR). Materials Characterization, 2009, 60, 669-679.	1.9	37
31	Alkali silica reactivity of agglomerated silica fume. Cement and Concrete Research, 2007, 37, 166-174.	4.6	62
32	Test methods for evaluating preventive measures for controlling expansion due to alkali–silica reaction in concrete. Cement and Concrete Research, 2006, 36, 1842-1856.	4.6	165
33	Evaluation of Viscosity Values for Mixing and Compaction Temperatures. Journal of Materials in Civil Engineering, 2006, 18, 545-553.	1.3	46
34	Laser scanning confocal microscopy for in situ monitoring of alkali-silica reaction. Journal of Microscopy, 2004, 213, 149-157.	0.8	13
35	Examination of the effects of LiOH, LiCl, and LiNO3 on alkali–silica reaction. Cement and Concrete Research, 2004, 34, 1403-1415.	4.6	62