Andrew M Twidle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/619472/publications.pdf

Version: 2024-02-01

22 papers 331 citations

840776 11 h-index 18 g-index

23 all docs

23 docs citations

 $\begin{array}{c} 23 \\ times \ ranked \end{array}$

397 citing authors

#	Article	IF	CITATIONS
1	Developing a mealybug pheromone monitoring tool to enhance IPM practices in New Zealand vineyards. Journal of Pest Science, 2023, 96, 29-39.	3.7	3
2	Identification of herbivore-induced plant volatiles from selected Rubus species fed upon by raspberry bud moth (Heterocrossa rubophaga) larvae. Phytochemistry, 2022, 202, 113325.	2.9	1
3	Synthesis and Electrophysiological Testing of Carbonyl Pheromone Analogues for Carposinid Moths. ACS Omega, 2021, 6, 21016-21023.	3.5	O
4	(7Z)-Tricosene Improves Pheromone Trap Catch of Raspberry Bud Moth, Heterocrossa rubophaga. Journal of Chemical Ecology, 2020, 46, 830-834.	1.8	1
5	Synthesis and Biological Testing of Ester Pheromone Analogues for Two Fruitworm Moths (Carposinidae). Journal of Agricultural and Food Chemistry, 2020, 68, 9557-9567.	5.2	6
6	Deployment of the sex pheromone of Pseudococcus calceolariae (Hemiptera: Pseudococcidae) as a potential new tool for mass trapping in citrus in South Australia. New Zealand Entomologist, 2019, 42, 1-12.	0.3	5
7	Identification of Floral Volatiles and Pollinator Responses in Kiwifruit Cultivars, Actinidia chinensis var. chinensis. Journal of Chemical Ecology, 2018, 44, 406-415.	1.8	14
8	Associative Learning of Food Odor by Social Wasps in a Natural Ecosystem. Journal of Chemical Ecology, 2018, 44, 915-921.	1.8	10
9	Identification of in situ flower volatiles from kiwifruit (Actinidia chinensis var. deliciosa) cultivars and their male pollenisers in a New Zealand orchard. Phytochemistry, 2017, 141, 61-69.	2.9	10
10	Kiwifruit Flower Odor Perception and Recognition by Honey Bees, <i>Apis mellifera</i> Journal of Agricultural and Food Chemistry, 2015, 63, 5597-5602.	5.2	28
11	Enantiospecific Synthesis of Both Enantiomers of the Longtailed Mealybug Pheromone and Their Evaluation in a New Zealand Vineyard. Journal of Organic Chemistry, 2015, 80, 7785-7789.	3.2	7
12	Spatial analysis of mass trapping: how close is close enough?. Pest Management Science, 2015, 71, 1452-1461.	3.4	34
13	Sex attractant for <i>lzatha peroneanella</i> (Walker) (Lepidoptera: Oecophoridae <i>sensu lato</i>), a lichen tuft moth. New Zealand Entomologist, 2014, 37, 93-95.	0.3	2
14	Volatiles from greenâ€lipped mussel as a lead to vespid wasp attractants. Journal of Applied Entomology, 2014, 138, 87-95.	1.8	16
15	Improving the Efficiency of Lepidopteran Pest Detection and Surveillance: Constraints and Opportunities for Multiple-Species Trapping. Journal of Chemical Ecology, 2013, 39, 50-58.	1.8	29
16	Apple Volatiles Synergize the Response of Codling Moth to Pear Ester. Journal of Chemical Ecology, 2013, 39, 643-652.	1.8	23
17	Volatiles from Apple Trees Infested with Light Brown Apple Moth Larvae Attract the Parasitoid Dolichogenidia tasmanica. Journal of Agricultural and Food Chemistry, 2012, 60, 9562-9566.	5 . 2	40
18	Communication disruption of light brown apple moth (Epiphyas postvittana) using a four-component sex pheromone blend. Crop Protection, 2012, 42, 327-333.	2.1	9

Andrew M Twidle

#	Article	IF	CITATION
19	The Absolute Configuration of the Sex Pheromone of the Citrophilous Mealybug, Pseudococcus calceolariae. Journal of Chemical Ecology, 2011, 37, 166-172.	1.8	24
20	Mobile mating disruption of lightâ€brown apple moths using pheromoneâ€treated sterile Mediterranean fruit flies. Pest Management Science, 2011, 67, 1004-1014.	3.4	13
21	Chrysanthemyl 2-acetoxy-3-methylbutanoate: the sex pheromone of the citrophilous mealybug, Pseudococcus calceolariae. Tetrahedron Letters, 2010, 51, 1075-1078.	1.4	29
22	Attraction and antennal response of the common wasp, <i>Vespula vulgaris</i> (L.), to selected synthetic chemicals in New Zealand beech forests. Pest Management Science, 2009, 65, 975-981.	3.4	24