
Andrew M Twidle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/619472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Volatiles from Apple Trees Infested with Light Brown Apple Moth Larvae Attract the Parasitoid Dolichogenidia tasmanica. Journal of Agricultural and Food Chemistry, 2012, 60, 9562-9566.	5.2	40
2	Spatial analysis of mass trapping: how close is close enough?. Pest Management Science, 2015, 71, 1452-1461.	3.4	34
3	Chrysanthemyl 2-acetoxy-3-methylbutanoate: the sex pheromone of the citrophilous mealybug, Pseudococcus calceolariae. Tetrahedron Letters, 2010, 51, 1075-1078.	1.4	29
4	Improving the Efficiency of Lepidopteran Pest Detection and Surveillance: Constraints and Opportunities for Multiple-Species Trapping. Journal of Chemical Ecology, 2013, 39, 50-58.	1.8	29
5	Kiwifruit Flower Odor Perception and Recognition by Honey Bees, <i>Apis mellifera</i> . Journal of Agricultural and Food Chemistry, 2015, 63, 5597-5602.	5.2	28
6	Attraction and antennal response of the common wasp, <i>Vespula vulgaris</i> (L.), to selected synthetic chemicals in New Zealand beech forests. Pest Management Science, 2009, 65, 975-981.	3.4	24
7	The Absolute Configuration of the Sex Pheromone of the Citrophilous Mealybug, Pseudococcus calceolariae. Journal of Chemical Ecology, 2011, 37, 166-172.	1.8	24
8	Apple Volatiles Synergize the Response of Codling Moth to Pear Ester. Journal of Chemical Ecology, 2013, 39, 643-652.	1.8	23
9	Volatiles from greenâ€lipped mussel as a lead to vespid wasp attractants. Journal of Applied Entomology, 2014, 138, 87-95.	1.8	16
10	Identification of Floral Volatiles and Pollinator Responses in Kiwifruit Cultivars, Actinidia chinensis var. chinensis. Journal of Chemical Ecology, 2018, 44, 406-415.	1.8	14
11	Mobile mating disruption of lightâ€brown apple moths using pheromoneâ€treated sterile Mediterranean fruit flies. Pest Management Science, 2011, 67, 1004-1014.	3.4	13
12	ldentification of in situ flower volatiles from kiwifruit (Actinidia chinensis var. deliciosa) cultivars and their male pollenisers in a New Zealand orchard. Phytochemistry, 2017, 141, 61-69.	2.9	10
13	Associative Learning of Food Odor by Social Wasps in a Natural Ecosystem. Journal of Chemical Ecology, 2018, 44, 915-921.	1.8	10
14	Communication disruption of light brown apple moth (Epiphyas postvittana) using a four-component sex pheromone blend. Crop Protection, 2012, 42, 327-333.	2.1	9
15	Enantiospecific Synthesis of Both Enantiomers of the Longtailed Mealybug Pheromone and Their Evaluation in a New Zealand Vineyard. Journal of Organic Chemistry, 2015, 80, 7785-7789.	3.2	7
16	Synthesis and Biological Testing of Ester Pheromone Analogues for Two Fruitworm Moths (Carposinidae). Journal of Agricultural and Food Chemistry, 2020, 68, 9557-9567.	5.2	6
17	Deployment of the sex pheromone ofPseudococcus calceolariae(Hemiptera: Pseudococcidae) as a potential new tool for mass trapping in citrus in South Australia. New Zealand Entomologist, 2019, 42, 1-12.	0.3	5
18	Developing a mealybug pheromone monitoring tool to enhance IPM practices in New Zealand vineyards. Journal of Pest Science, 2023, 96, 29-39.	3.7	3

#	Article	IF	CITATIONS
19	Sex attractant for <i>Izatha peroneanella</i> (Walker) (Lepidoptera: Oecophoridae <i>sensu lato</i>), a lichen tuft moth. New Zealand Entomologist, 2014, 37, 93-95.	0.3	2
20	(7Z)-Tricosene Improves Pheromone Trap Catch of Raspberry Bud Moth, Heterocrossa rubophaga. Journal of Chemical Ecology, 2020, 46, 830-834.	1.8	1
21	Identification of herbivore-induced plant volatiles from selected Rubus species fed upon by raspberry bud moth (Heterocrossa rubophaga) larvae. Phytochemistry, 2022, 202, 113325.	2.9	1
22	Synthesis and Electrophysiological Testing of Carbonyl Pheromone Analogues for Carposinid Moths. ACS Omega, 2021, 6, 21016-21023.	3.5	0