Hyo-Sung Ahn

List of Publications by Citations

Source: https://exaly.com/author-pdf/6194634/hyo-sung-ahn-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 267
 5,703
 30
 70

 papers
 citations
 h-index
 g-index

 328
 7,486
 3.5
 6.49

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
267	A survey of multi-agent formation control. <i>Automatica</i> , 2015 , 53, 424-440	5.7	1025
266	Iterative Learning Control: Brief Survey and Categorization. <i>IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews</i> , 2007 , 37, 1099-1121		872
265	Nonlinear Control of Quadrotor for Point Tracking: Actual Implementation and Experimental Tests. <i>IEEE/ASME Transactions on Mechatronics</i> , 2015 , 20, 1179-1192	5.5	183
264	Necessary and sufficient stability condition of fractional-order interval linear systems. <i>Automatica</i> , 2008 , 44, 2985-2988	5.7	176
263	Robust stability check of fractional order linear time invariant systems with interval uncertainties. <i>Signal Processing</i> , 2006 , 86, 2611-2618	4.4	162
262	Formation control of mobile agents based on inter-agent distance dynamics. <i>Automatica</i> , 2011 , 47, 23	06 <i>527</i> 317	2 147
261	Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality. <i>Applied Mathematics and Computation</i> , 2007 , 187, 27-34	2.7	140
260	Formation Control and Network Localization via Orientation Alignment. <i>IEEE Transactions on Automatic Control</i> , 2014 , 59, 540-545	5.9	111
259	Distance-based undirected formations of single-integrator and double-integrator modeled agents in n-dimensional space. <i>International Journal of Robust and Nonlinear Control</i> , 2014 , 24, 1809-1820	3.6	108
258	Fractional-order iterative learning control for fractional-order linear systems. <i>Asian Journal of Control</i> , 2011 , 13, 54-63	1.7	101
257	. IEEE Transactions on Automation Science and Engineering, 2009 , 6, 626-633	4.9	85
256	Stability analysis of discrete-time iterative learning control systems with interval uncertainty. <i>Automatica</i> , 2007 , 43, 892-902	5.7	85
255	Stability and Stabilization of Fractional-Order Linear Systems Subject to Input Saturation. <i>IEEE Transactions on Automatic Control</i> , 2013 , 58, 1062-1067	5.9	82
254	Trajectory-keeping in satellite formation flying via robust periodic learning control. <i>International Journal of Robust and Nonlinear Control</i> , 2010 , 20, 1655-1666	3.6	82
253	Robust controllability of interval fractional order linear time invariant systems. <i>Signal Processing</i> , 2006 , 86, 2794-2802	4.4	81
252	Formation Control of Mobile Agents Based on Distributed Position Estimation. <i>IEEE Transactions on Automatic Control</i> , 2013 , 58, 737-742	5.9	75
251	Iterative Learning Control. Communications and Control Engineering, 2007,	0.6	71

(2013-2010)

250	Fractional order robust control for cogging effect compensation in PMSM position servo systems: Stability analysis and experiments. <i>Control Engineering Practice</i> , 2010 , 18, 1022-1036	3.9	68
249	Iterative Learning Control: A Tutorial and Big Picture View 2006,		57
248	. IEEE Transactions on Magnetics, 2005 , 41, 90-98	2	55
247	Iterative learning control in optimal tracking problems with specified data points. <i>Automatica</i> , 2013 , 49, 1465-1472	5.7	53
246	. IEEE Transactions on Industrial Electronics, 2009 , 56, 4296-4302	8.9	50
245	. IEEE Transactions on Industrial Electronics, 2016 , 63, 1268-1279	8.9	46
244	. IEEE Transactions on Aerospace and Electronic Systems, 2006 , 42, 70-83	3.7	41
243	Matrix-weighted consensus and its applications. <i>Automatica</i> , 2018 , 89, 415-419	5.7	40
242	Distributed formation control via global orientation estimation. <i>Automatica</i> , 2016 , 73, 125-129	5.7	39
241	Iteration domain HEbptimal iterative learning controller design. <i>International Journal of Robust and Nonlinear Control</i> , 2008 , 18, 1001-1017	3.6	38
240	Distributed stabilization control of rigid formations with prescribed orientation. <i>Automatica</i> , 2017 , 78, 250-257	5.7	37
239	A Survey on Fractional-Order Iterative Learning Control. <i>Journal of Optimization Theory and Applications</i> , 2013 , 156, 127-140	1.6	37
238	Monotonic convergent iterative learning controller design based on interval model conversion. <i>IEEE Transactions on Automatic Control</i> , 2006 , 51, 366-371	5.9	33
237	Rigid formation control of double-integrator systems. <i>International Journal of Control</i> , 2017 , 90, 1403-1	41.9	29
236	Discrete-Time \$H_{infty}\$ Filtering for Mobile Robot Localization Using Wireless Sensor Network. <i>IEEE Sensors Journal</i> , 2013 , 13, 245-252	4	29
235	DGPS/IMU integration-based geolocation system: Airborne experimental test results. <i>Aerospace Science and Technology</i> , 2009 , 13, 316-324	4.9	28
234	Finite-Time Bearing-Only Formation Control via Distributed Global Orientation Estimation. <i>IEEE Transactions on Control of Network Systems</i> , 2019 , 6, 702-712	4	28
233	A design of bilateral teleoperation systems using composite adaptive controller. <i>Control Engineering Practice</i> , 2013 , 21, 1641-1652	3.9	26

232	. IEEE Systems Journal, 2016 , 10, 162-168	4.3	25
231	Disturbance Attenuation in a Consensus Network of Identical Linear Systems: An \$ {cal H}_{infty }\$ Approach. <i>IEEE Transactions on Automatic Control</i> , 2014 , 59, 2164-2169	5.9	25
230	Distance-based formation control with a single moving leader 2014 ,		24
229	Distance-Based Cycle-Free Persistent Formation: Global Convergence and Experimental Test With a Group of Quadcopters. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 380-389	8.9	24
228	Robustly stable bilateral teleoperation under time-varying delays and data losses: an energy-bounding approach. <i>Journal of Mechanical Science and Technology</i> , 2011 , 25, 2089-2100	1.6	24
227	A Circuit Design for Ranging Measurement Using Chirp Spread Spectrum Waveform. <i>IEEE Sensors Journal</i> , 2010 , 10, 1774-1778	4	24
226	Fractional-order integral and derivative controller for temperature profile tracking. <i>Sadhana - Academy Proceedings in Engineering Sciences</i> , 2009 , 34, 833-850	1	23
225	Nonlinear Orbital Dynamic Equations and State-Dependent Riccati Equation Control of Formation Flying Satellites. <i>Journal of the Astronautical Sciences</i> , 2003 , 51, 433-449	1.1	23
224	A survey on multi-agent reinforcement learning: Coordination problems 2010,		21
223	Distance-based control of cycle-free persistent formations 2011 ,		21
223	Distance-based control of cycle-free persistent formations 2011 , Consensus Under Saturation Constraints in Interconnection States. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 3053-3058	5.9	20
, in the second	Consensus Under Saturation Constraints in Interconnection States. <i>IEEE Transactions on Automatic</i>	5.9	
222	Consensus Under Saturation Constraints in Interconnection States. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 3053-3058 Distributed Coordination for Optimal Energy Generation and Distribution in Cyber-Physical Energy		20
222	Consensus Under Saturation Constraints in Interconnection States. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 3053-3058 Distributed Coordination for Optimal Energy Generation and Distribution in Cyber-Physical Energy Networks. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 941-954 Unknown Input H\$_{bm infty}\$ Observer-Based Localization of a Mobile Robot With Sensor Failure.	10.2	20
222 221 220	Consensus Under Saturation Constraints in Interconnection States. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 3053-3058 Distributed Coordination for Optimal Energy Generation and Distribution in Cyber-Physical Energy Networks. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 941-954 Unknown Input H\$_{bm infty}\$ Observer-Based Localization of a Mobile Robot With Sensor Failure. <i>IEEE/ASME Transactions on Mechatronics</i> , 2014 , 19, 1830-1838	10.2	20 20 20
222 221 220 219	Consensus Under Saturation Constraints in Interconnection States. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 3053-3058 Distributed Coordination for Optimal Energy Generation and Distribution in Cyber-Physical Energy Networks. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 941-954 Unknown Input H\$_{bm infty}\$ Observer-Based Localization of a Mobile Robot With Sensor Failure. <i>IEEE/ASME Transactions on Mechatronics</i> , 2014 , 19, 1830-1838 Stability analysis on four agent tetrahedral formations 2014 , Fractional Order Periodic Adaptive Learning Compensation for State-Dependent Periodic	10.2 5·5	20 20 20 20
222 221 220 219 218	Consensus Under Saturation Constraints in Interconnection States. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 3053-3058 Distributed Coordination for Optimal Energy Generation and Distribution in Cyber-Physical Energy Networks. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 941-954 Unknown Input H\$_{bm infty}\$ Observer-Based Localization of a Mobile Robot With Sensor Failure. <i>IEEE/ASME Transactions on Mechatronics</i> , 2014 , 19, 1830-1838 Stability analysis on four agent tetrahedral formations 2014 , Fractional Order Periodic Adaptive Learning Compensation for State-Dependent Periodic Disturbance. <i>IEEE Transactions on Control Systems Technology</i> , 2012 , 20, 465-472 Coordination and control for energy distribution in distributed grid networks: Theory and	10.2 5·5 4.8	20 20 20 20 20

(2018-2015)

214	Formation stabilization and resizing based on the control of inter-agent distances. <i>International Journal of Robust and Nonlinear Control</i> , 2015 , 25, 2532-2546	3.6	18
213	Controller designs for bilateral teleoperation with input saturation. <i>Control Engineering Practice</i> , 2014 , 33, 35-47	3.9	18
212	Stability analysis of spatially interconnected discrete-time systems with random delays and structured uncertainties. <i>Journal of the Franklin Institute</i> , 2013 , 350, 1719-1738	4	17
211	Leader-follower type distance-based formation control of a group of autonomous agents. International Journal of Control, Automation and Systems, 2017, 15, 1738-1745	2.9	17
210	Decentralized control of nonlinear interconnected systems under both amplitude and rate saturations. <i>Automatica</i> , 2013 , 49, 2551-2555	5.7	17
209	Distributed Coordination Control and Industrial Applications. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 4967-4971	8.9	15
208	Formations on directed cycles with bearing-only measurements. <i>International Journal of Robust and Nonlinear Control</i> , 2018 , 28, 1074-1096	3.6	15
207	Design and control of tele-matched surgery robot. <i>Mechatronics</i> , 2014 , 24, 395-406	3	15
206	A survey of formation of mobile agents 2010 ,		15
205	Terminal iterative learning control with multiple intermediate pass points 2011 ,		15
204	Gyroless attitude estimation of sun-pointing satellites using magnetometers. <i>IEEE Geoscience and Remote Sensing Letters</i> , 2005 , 2, 8-12	4.1	15
204		4.1	15
	Remote Sensing Letters, 2005, 2, 8-12 Consensus-Based Coordination and Control for Building Automation Systems. <i>IEEE Transactions on</i>		
203	Remote Sensing Letters, 2005, 2, 8-12 Consensus-Based Coordination and Control for Building Automation Systems. IEEE Transactions on Control Systems Technology, 2015, 23, 364-371	4.8	14
203	Remote Sensing Letters, 2005, 2, 8-12 Consensus-Based Coordination and Control for Building Automation Systems. IEEE Transactions on Control Systems Technology, 2015, 23, 364-371 Continuous-time opinion dynamics on multiple interdependent topics. Automatica, 2020, 115, 108884 LeaderBollower type relative position keeping in satellite formation flying via robust exponential	4.8	14
203	Consensus-Based Coordination and Control for Building Automation Systems. <i>IEEE Transactions on Control Systems Technology</i> , 2015 , 23, 364-371 Continuous-time opinion dynamics on multiple interdependent topics. <i>Automatica</i> , 2020 , 115, 108884 Leaderfollower type relative position keeping in satellite formation flying via robust exponential stabilization. <i>International Journal of Robust and Nonlinear Control</i> , 2012 , 22, 2084-2099	4.8	14
203 202 201 200	Consensus-Based Coordination and Control for Building Automation Systems. <i>IEEE Transactions on Control Systems Technology</i> , 2015 , 23, 364-371 Continuous-time opinion dynamics on multiple interdependent topics. <i>Automatica</i> , 2020 , 115, 108884 Leaderfollower type relative position keeping in satellite formation flying via robust exponential stabilization. <i>International Journal of Robust and Nonlinear Control</i> , 2012 , 22, 2084-2099 A generalized fractional-order iterative learning control 2011 , Dynamic high order periodic adaptive learning compensator for cogging effect in permanent	4.8 5·7 3.6	14 14 14 13

196	Analogue input shaper for haptic interfaces. IET Control Theory and Applications, 2009, 3, 1553-1564	2.5	12
195	Distance-Based Control of \$mathcal {K}_{n}\$ Formations in General Space With Almost Global Convergence. <i>IEEE Transactions on Automatic Control</i> , 2018 , 63, 2678-2685	5.9	11
194	Iterative learning control for spatially interconnected systems. <i>Applied Mathematics and Computation</i> , 2014 , 237, 438-445	2.7	11
193	Stability analysis of linear systems under state and rate saturations. <i>Automatica</i> , 2013 , 49, 496-502	5.7	11
192	Formation control of mobile agents without an initial common sense of orientation 2012,		11
191	An interval Kalman filtering with minimal conservatism. <i>Applied Mathematics and Computation</i> , 2012 , 218, 9563-9570	2.7	11
190	An Optimal Satellite Antenna Profile Using Reinforcement Learning. <i>IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews</i> , 2011 , 41, 393-406		11
189	State-dependent friction force compensation using periodic adaptive learning control. <i>Mechatronics</i> , 2009 , 19, 896-904	3	11
188	Exact Maximum Singular Value Calculation of an Interval Matrix. <i>IEEE Transactions on Automatic Control</i> , 2007 , 52, 510-514	5.9	11
187	Guidance using bearing-only measurements with three beacons in the plane. <i>Control Engineering Practice</i> , 2016 , 51, 81-91	3.9	11
186	Consensus of positive real systems cascaded with a single integrator. <i>International Journal of Robust and Nonlinear Control</i> , 2015 , 25, 418-429	3.6	10
185	Comments on G lobal stabilization of rigid formations in the plane [Automatica 49 (2013) 1436 []441][[]Automatica, 2017 , 77, 393-396	5.7	9
184	Sensorless torque estimation using adaptive Kalman filter and disturbance estimator 2010,		9
183	Synchronization of bilateral teleoperation systems using state and force observer 2010,		9
182	Synchronization of bilateral teleoperation systems with input saturation 2010,		9
181	Distributed estimation for the unknown orientation of the local reference frames in N-dimensional space 2016 ,		9
180	Relative position keeping in satellite formation flying with input saturation. <i>Journal of the Franklin Institute</i> , 2014 , 351, 1112-1129	4	8
179	H Iand Sliding Mode Observers for Linear Time-Invariant Fractional-Order Dynamic Systems With Initial Memory Effect. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 2014 , 136,	1.6	8

(2020-2012)

178	Modified gradient control for acyclic minimally persistent formations to escape from collinear position 2012 ,		8
177	Passivity-based output synchronisation of port-controlled Hamiltonian and general linear interconnected systems. <i>IET Control Theory and Applications</i> , 2013 , 7, 234-245	2.5	8
176	Distributed Orientation Estimation in SO(\$d\$) and Applications to Formation Control and Network Localization. <i>IEEE Transactions on Control of Network Systems</i> , 2019 , 6, 1302-1312	4	8
175	Formation Control. Studies in Systems, Decision and Control, 2020,	0.8	8
174	Consensus With Output Saturations. IEEE Transactions on Automatic Control, 2017, 62, 5388-5395	5.9	7
173	The FermatWeber location problem in single integrator dynamics using only local bearing angles. <i>Automatica</i> , 2015 , 59, 90-96	5.7	7
172	Shape and orientation control of moving formation in multi-agent systems without global reference frame. <i>Automatica</i> , 2018 , 92, 210-216	5.7	7
171	Environmental-Adaptive Bias Calibration in Wireless Localization. <i>IEEE Communications Letters</i> , 2013 , 17, 717-720	3.8	7
170	2017,		7
169	Finite-time convergence control for acyclic persistent formations 2014 ,		7
169 168	Finite-time convergence control for acyclic persistent formations 2014, Exponential stabilization of infinitesimally rigid formations 2014,		7
168	Exponential stabilization of infinitesimally rigid formations 2014 ,	2.9	
168 167	Exponential stabilization of infinitesimally rigid formations 2014 , Distance-based control of K4 formation with almost global convergence 2016 , Distance-based acyclic minimally persistent formations with non-steepest descent control.	2.9	7
168 167 166	Exponential stabilization of infinitesimally rigid formations 2014, Distance-based control of K4 formation with almost global convergence 2016, Distance-based acyclic minimally persistent formations with non-steepest descent control. International Journal of Control, Automation and Systems, 2016, 14, 163-173	2.9	7 7 7
168 167 166	Exponential stabilization of infinitesimally rigid formations 2014, Distance-based control of K4 formation with almost global convergence 2016, Distance-based acyclic minimally persistent formations with non-steepest descent control. International Journal of Control, Automation and Systems, 2016, 14, 163-173 Bearing-Based Formation Control and Network Localization via Global Orientation Estimation 2018, Semiglobal consensus of heterogeneous multiagent systems with input saturations. International		7 7 7
168 167 166 165	Exponential stabilization of infinitesimally rigid formations 2014, Distance-based control of K4 formation with almost global convergence 2016, Distance-based acyclic minimally persistent formations with non-steepest descent control. International Journal of Control, Automation and Systems, 2016, 14, 163-173 Bearing-Based Formation Control and Network Localization via Global Orientation Estimation 2018, Semiglobal consensus of heterogeneous multiagent systems with input saturations. International Journal of Robust and Nonlinear Control, 2018, 28, 5652-5664 Stabilisation of directed cycle formations and application to two-wheeled mobile robots. IET	3.6	7 7 7 7

160	Bio-insect and artificial robot interaction: learning mechanism and experiment. <i>Soft Computing</i> , 2014 , 18, 1127-1141	3.5	6
159	Unknown Input Observer-Based Filterings for Mobile Pedestrian Localization Using Wireless Sensor Networks. <i>IEEE Sensors Journal</i> , 2014 , 14, 2590-2600	4	6
158	Matrix-weighted consensus with leader-following topologies 2017,		6
157	Extended Kalman filter with multi-frequency reference data for quadrotor navigation 2015,		6
156	. IEEE Systems Journal, 2015 , 9, 1285-1298	4.3	6
155	Distance-based control of formations with orientation control 2015 ,		6
154	Non-Trivial Output Synchronization of Heterogeneous Passive Systems. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 3322-3327	5.9	6
153	Formation control of rigid bodies based on orientation alignment and position estimation 2014,		6
152	Multi-agent coordination by iterative learning control: Centralized and decentralized strategies 2011 ,		6
151	Three-axis attitude determination using incomplete vector observations. <i>Acta Astronautica</i> , 2009 , 65, 1089-1093	2.9	6
150	Wireless Localization Networks for Indoor Service Robots 2008,		6
149	Wireless Localization Network for Ubiquitous Robotic Space: Approaches and Experimental Test 2007 ,		6
148	Distributed coordination and control of multiple photovoltaic generators for power distribution in a microgrid. <i>Automatica</i> , 2016 , 73, 193-199	5.7	6
147	Pointing Consensus and Bearing-Based Solutions to the FermatWeber Location Problem. <i>IEEE Transactions on Automatic Control</i> , 2020 , 65, 2339-2354	5.9	6
146	Distributed Orientation Localization of Multi-agent Systems in 3-dimensional Space with Direction-only Measurements 2018 ,		6
145	Robust tracking control of bearing-constrained leaderfollower formation. <i>Automatica</i> , 2021 , 131, 10973	3 3.7	6
144	Bearing-only control of directed cycle formations: Almost global convergence and hardware implementation. <i>International Journal of Robust and Nonlinear Control</i> , 2020 , 30, 4789-4804	3.6	5
143	Formation control of rigid graphs with flex edges. <i>International Journal of Robust and Nonlinear Control</i> , 2018 , 28, 2543-2559	3.6	5

142	Consensus under misaligned orientations 2017 ,		5
141	Formation control of mobile agent groups based on localization 2011,		5
140	Formation coordination for self-mobile localization: Framework 2009,		5
139	Periodic adaptive learning control for velocity-dependent disturbance compensation 2009,		5
138	. IEEE Transactions on Aerospace and Electronic Systems, 2004 , 40, 1020-1030	3.7	5
137	Prototype Development for the GMT FSM Secondary - Off-axis Aspheric Mirror Fabrication <i>Journal of Astronomy and Space Sciences</i> , 2014 , 31, 341-346		5
136	Realization of swarm formation flying and optimal trajectory generation for multi-drone performance show 2016 ,		5
135	Bearing-Only Control of Leader First Follower Formations**This work was supported by the National Research Foundation of Korea under Grant NRF-2015M2A8A4049953 <i>IFAC-PapersOnLine</i> , 2016 , 49, 7-12	0.7	5
134	Distance-Based Formation Control With Bounded Disturbances 2021 , 5, 451-456		5
133	Distributed Robust Adaptive Gradient Controller in Distance-Based Formation Control With Exogenous Disturbance. <i>IEEE Transactions on Automatic Control</i> , 2021 , 66, 2868-2874	5.9	5
132	Distributed Formation Control based on Orientation Alignment and Position Estimation. <i>International Journal of Control, Automation and Systems</i> , 2018 , 16, 1112-1119	2.9	5
131	Distributed formation control of the special Euclidean group SE(2) via global orientation control. <i>IET Control Theory and Applications</i> , 2020 , 14, 1393-1399	2.5	4
130	A distributed control algorithm via saddle point dynamics for optimal resource allocation problem over netwoked systems 2017 ,		4
129	Rigidity of distance-based formations with additional subtended-angle constraints 2017,		4
128	Fractional order iterative learning control for fractional order system with unknown initialization 2014 ,		4
127	Consensus of nonlinear system using feedback linearization 2010 ,		4
126	2010,		4
125	Algebraic \$H_infty\$ Design of Higher-Order Iterative Learning Controllers		4

124	Schur stability radius bounds for robust iterative learning controller design		4
123	Multi-agent coordination over local indexes via clique-based distributed assignment. <i>Automatica</i> , 2020 , 112, 108670	5.7	4
122	Further analysis on graph rigidity 2016 ,		4
121	Bearing-based Formation Control via Distributed Position Estimation 2018,		4
120	2018,		4
119	Finite-Time Bearing-Based Maneuver of Acyclic Leader-Follower Formations 2022 , 6, 1004-1009		4
118	. IEEE Transactions on Automatic Control, 2015 , 60, 2231-2236	5.9	3
117	A Robot Learns How to Entice an Insect. <i>IEEE Intelligent Systems</i> , 2015 , 30, 54-63	4.2	3
116	Consensus under biased alignment. <i>Automatica</i> , 2019 , 110, 108605	5.7	3
115	Bio-insect and artificial robot interaction using cooperative reinforcement learning. <i>Applied Soft Computing Journal</i> , 2014 , 25, 322-335	7.5	3
114	On the positive invariance of polyhedral sets in fractional-order linear systems. <i>Automatica</i> , 2013 , 49, 3690-3694	5.7	3
113	Implementation of load transportation using multiple quadcopters 2017,		3
112	A new bearing-only navigation law 2017 ,		3
111	Finite-time bearing-only formation control 2017 ,		3
110	2014,		3
109	Power distribution with consensus 2012 ,		3
108	Control of inter-agent distances in cyclic polygon formations 2012 ,		3
107	On P-type fractional order iterative learning identification 2013 ,		3

106	Control of undirected four-agent formations in 3-dimensional space 2013,		3
105	Distance-based sequential formation control of mobile agents by using motion primitives 2010 ,		3
104	Distance-based formation control using euclidean distance dynamics matrix: Three-agent case 2011		3
103	Fractional order periodic adaptive learning compensation for cogging effect in PMSM position servo system 2009 ,		3
102	Cooperative Reinforcement Learning: Brief Survey and Application to Bio-insect and Artificial Robot Interaction 2008 ,		3
101	Fractional-order integral and derivative controller design for temperature profile control 2008,		3
100	Dual-high-order periodic adaptive learning compensation for state-dependant periodic disturbance 2008 ,		3
99	LMI Approach to Iterative Learning Control Design 2006,		3
98	Simultaneous Pedestrian and Robot Localization Technique in an Indoor Ubiquitous Robotic Space (URS) 2007 , 3		3
97	Distributed Computation of Graph Matching in Multi-Agent Networks 2020 ,		3
96	Partial consensus of identical feedforward dynamic systems with input saturations. <i>International Journal of Robust and Nonlinear Control</i> , 2016 , 26, 2494-2510	3.6	3
95	Infinitesimal Weak Rigidity and Stability Analysis on Three-Agent Formations 2018,		3
94	Consensus of generalized integrators: Convergence rate and disturbance attenuation property. <i>Automatica</i> , 2016 , 65, 115-119	5.7	2
93	Finite-time convergence of acyclic generically persistent formations 2018,		2
92	Generation of satellite tracking profile: Problems and validation algorithms. <i>Advances in Space Research</i> , 2014 , 54, 1092-1107	2.4	2
91	Nonholonomic control of distance-based cyclic polygon formation 2013,		2
90	Lennard-jones potential field-based swarm systems for aggregation and obstacle avoidance 2017,		2
89	Distance-based directed formation control in three-dimensional space 2017 ,		2

88	Orientation alignment-based formation control with reference node 2015,		2
87	Displacement estimation by range measurements and application to formation control 2015,		2
86	A new velocity observer for a class of double integrator dynamics 2014,		2
85	Control of a mobile agent using only bearing measurements in triangular region 2014,		2
84	Orientation alignment based formation control in multi-agent systems 2012,		2
83	Satellite formation flying with input saturation: An LMI approach 2011 ,		2
82	Fractional Order Adaptive Control for Cogging Effect Compensation 2010 , 393-409		2
81	Simultaneous pedestrian and multiple mobile robots localization using distributed extended Kalman filter 2009 ,		2
80	Bio-insect and artificial robots interaction: A dragging mechanism and experimental results 2009,		2
79	Exact Maximum Singular Value of a Complex Interval Matrix. <i>IEEE Transactions on Automatic Control</i> , 2008 , 53, 2165-2170	5.9	2
78	Conservatism-free Robust Stability Check of Fractional-order Interval Linear Systems. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2008 , 41, 15256-15261		2
77	Round-trip time-based wireless positioning without time synchronization 2007,		2
76	Robust stability condition of an uncertain networked system with delayed data dropout in both forward and feedback channels 2006 ,		2
75	Fixed-time orientation estimation and network localisation of multi-agent systems. <i>IET Control Theory and Applications</i> , 2021 , 15, 64-76	2.5	2
74	Minimal and Redundant Bearing Rigidity: Conditions and Applications. <i>IEEE Transactions on Automatic Control</i> , 2020 , 65, 4186-4200	5.9	2
73	Fixed-time network localization based on bearing measurements 2020,		2
72	Distributed Constrained Optimization over Networked Systems via A Singular Perturbation Method and Application to Economic Dispatch 2020 ,		2
71	Generalized weak rigidity: Theory, and local and global convergence of formations. <i>Systems and Control Letters</i> , 2020 , 146, 104800	2.4	2

7°	Realization of distributed formation flying using a group of autonomous quadcopters and application to visual performance show 2016 ,		2
69	Leader-Follower Bearing-based Formation System with Exogenous Disturbance 2019,		2
68	Resource Allocation for Epidemic Network under Complications 2019,		2
67	Index-free assignment formation of networked multi-agent systems 2018,		2
66	A Distributed Algorithm via Consensus and Saddle Point Dynamics for Economic Dispatch Problem in Energy Networked Systems 2018 ,		2
65	A comparison of neural network-based methods for load forecasting with selected input candidates 2017 ,		1
64	From Matrix-Weighted Consensus to Multipartite Average Consensus. <i>IEEE Transactions on Control of Network Systems</i> , 2020 , 7, 1609-1620	4	1
63	Data-Driven Networked Optimal Iterative Learning Control for Discrete Linear Time-Varying Systems with One-Operation Bernoulli-Type Communication Delays. <i>Discrete Dynamics in Nature and Society</i> , 2017 , 2017, 1-12	1.1	1
62	Sensor failure detection, identification and accommodation using neural network and fuzzy voter 2017 ,		1
61	Image-based lane tracking in quadcopter 2016 ,		1
60	Shock Propagation in Cascade Systems: Analysis and Applications. <i>IEEE Systems Journal</i> , 2016 , 10, 59-68	4.3	1
59	Pointing consensus for rooted out-branching graphs 2018,		1
58	An algorithm to determine linear independence of a set of interval vectors. <i>Applied Mathematics and Computation</i> , 2013 , 219, 10822-10830	2.7	1
57	Distributed filtering and synchronization of diffusively state-coupled heterogeneous systems. <i>International Journal of Robust and Nonlinear Control</i> , 2017 , 27, 2357-2392	3.6	1
56	Planar Bearing-only Cyclic Pursuit for Target Capture. IFAC-PapersOnLine, 2017, 50, 10136-10141	0.7	1
55	Distributed Nash equilibrium seeking of an aggregative game by a singular perturbed algorithm 2017 ,		1
54	A finite-time convergence of acyclic generically persistent formation in 3-D using relative position measurements 2017 ,		1
53	Distributed control for synchronization on the circle 2017 ,		1

52	Leader-follower type formation control using local displacement measurements: Velocity observer-based approach 2015 ,	1
51	Discrete-time repetitive process-based iterative learning control for heterogeneous systems with arbitrary interconnections 2014 ,	1
50	Bio-insect and artificial robot interaction using cooperative reinforcement learning 2012,	1
49	Coordination and control for building automation systems 2013,	1
48	Formation-scaling strategy for an acyclic triangular formation: Distance-based approach 2013,	1
47	Finite-gain Listabilization of satellite formation flying with input saturation 2011,	1
46	2011,	1
45	Sliding mode observer-based stabilization of interconnected fractional order systems 2012,	1
44	Passivity-based output synchronization of interconnected linear systems 2012,	1
43	Bilateral teleoperation systems using genetic algorithms 2009,	1
42	Design of dynamic periodic adaptive learning controller for long-term cogging effect compensation 2008 ,	1
41	Adaptive Path-loss Model-based Indoor Localization 2008,	1
40	A high order periodic adaptive learning compensator for cogging effect in PMSM position servo system. <i>Conference Proceedings IEEE International Conference on Systems, Man, and Cybernetics</i> , 2 2008 ,	1
39	Navi-Guider: An Intuitive Guiding System for the Mobile Robot 2007,	1
38	Stability Analysis and Control of Repetitive Trajectory Systems in the State-Domain: Roller Coaster Application 2007 ,	1
37	Human-Robot Interactive Guiding System's Application in Sonar Quick Mapping 2007,	1
36	Maximum singular value and power of an interval matrix 2006 ,	1
35	State-periodic adaptive compensation of cogging and Coulomb friction in permanent magnet linear motors	1

34	Linear Independency of Interval Vectors and Its Applications to Robust Controllability Tests		1
33	Distance-based Formation Tracking with Unknown Bounded Reference Velocity 2020,		1
32	Distance-based Formation Control: Background, Principal Results and Issues. <i>Journal of Institute of Control, Robotics and Systems</i> , 2013 , 19, 398-409	1	1
31	Pose localization of leaderfollower networks with direction measurements. <i>Automatica</i> , 2020 , 120, 109125	5.7	1
30	Preliminary Background. Studies in Systems, Decision and Control, 2020, 3-26	0.8	1
29	Discrete-Time Matrix-Weighted Consensus. IEEE Transactions on Control of Network Systems, 2021, 1-1	4	1
28	Network Localization of Uniformly Connected Graph Using Orientation Estimation 2018,		1
27	Distributed Solving Exact Potential Games via Differential Inclusions and Consensus Algorithms 2018 ,		1
26	Distributed bearing vector estimation in multi-agent networks. <i>Automatica</i> , 2020 , 115, 108895	5.7	0
25	Tracking Control of Directed Acyclic Formation via Target Point Localization. <i>Lecture Notes in Networks and Systems</i> , 2021 , 839-845	0.5	O
24	A Geometric Compression Method Using Dominant Points for Transmission to LEO Satellites. <i>International Journal of Aeronautical and Space Sciences</i> , 2016 , 17, 622-630	1.2	O
23	Network-based distributed direct load control guaranteeing fair welfare maximisation. <i>IET Control Theory and Applications</i> , 2019 , 13, 2959-2968	2.5	O
22	Multi-agent Localization of A Common Reference Coordinate Frame: An Extrinsic Approach. <i>IFAC-PapersOnLine</i> , 2019 , 52, 67-72	0.7	0
21	Robust Voltage Stabilization Controller for Uncertain DC Microgrids. <i>IEEE Access</i> , 2021 , 9, 99606-99616	3.5	O
20	Sign rigidity theory and application to formation specification control. <i>Automatica</i> , 2022 , 141, 110291	5.7	O
19	. IEEE Transactions on Control Systems Technology, 2017 , 25, 2098-2111	4.8	
18	Authors leply to Comments on Necessary and sufficient stability condition of fractional-order interval linear systems [Automatica 44 (2008) 2985 [2988]. <i>Automatica</i> , 2014 , 50, 2736	5.7	
17	If iltering for time-invariant continuous discrete linear systems. <i>Journal of the Franklin Institute</i> , 2014 , 351, 1316-1334	4	

16	Geometrical Attitude Determination Algorithm Based on Vector Measurements. <i>Transactions of the Japan Society for Aeronautical and Space Sciences</i> , 2010 , 53, 8-18	0.8
15	A Tethering Device for Mobile Robot Guidance. <i>International Journal of Advanced Robotic Systems</i> , 2009 , 6, 17	1.4
14	Convergence of Distance-based Formations in Case of Failure of Sensing Distances: Rigidity Theory Perspective. <i>IFAC-PapersOnLine</i> , 2021 , 54, 394-399	0.7
13	Bearing-Based Formation Control via Global Orientation Alignment. <i>Studies in Systems, Decision and Control</i> , 2020 , 255-268	0.8
12	Moving Formation. Studies in Systems, Decision and Control, 2020, 271-295	0.8
11	K(n) Formation and Resizing. Studies in Systems, Decision and Control, 2020, 297-319	0.8
10	Network Localization. Studies in Systems, Decision and Control, 2020, 321-337	0.8
9	Global Stabilization. Studies in Systems, Decision and Control, 2020 , 63-96	0.8
8	Local Stabilization. Studies in Systems, Decision and Control, 2020, 97-116	0.8
7	Persistent Formations. Studies in Systems, Decision and Control, 2020, 117-139	0.8
6	Formation Control via Orientation Alignment. Studies in Systems, Decision and Control, 2020, 143-164	0.8
5	Formation Control via Orientation and Position Estimation. <i>Studies in Systems, Decision and Control</i> , 2020 , 165-183	0.8
4	Formation Control via Global Orientation Alignment. Studies in Systems, Decision and Control, 2020, 185	5-218
3	Formation Control via Bearing Measurements. Studies in Systems, Decision and Control, 2020, 221-254	0.8
2	A distributed singular perturbation algorithm in a non-cooperative game under limited control authority. <i>IFAC-PapersOnLine</i> , 2018 , 51, 367-372	0.7
1	Distributed bearing-based formation control and network localization with exogenous disturbances. <i>International Journal of Robust and Nonlinear Control</i> ,	3.6