Xingyang He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6194537/publications.pdf

Version: 2024-02-01

185998 182168 2,794 71 28 51 h-index citations g-index papers 71 71 71 905 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of organic alkali on hydration of GGBS-FA blended cementitious material activated by sodium carbonate. Ceramics International, 2022, 48, 1611-1621.	2.3	8
2	One-step synthesis of nanoscale anhydrous calcium sulfate whiskers: direct conversion of calcium carbonate by mixed acid with microemulsion method. Journal of Nanoparticle Research, 2022, 24, 1.	0.8	6
3	One-pot synthesis of polydopamine/Ag microspheres through microemulsion environment and its methylene blue removal application. Journal of Polymer Research, 2022, 29, 1.	1.2	6
4	Research on mechanical-activated nanoscale bentonite and surface aging behavior of its modified asphalt. Construction and Building Materials, 2022, 321, 126356.	3.2	11
5	Mechanical performance, hydration characteristics and microstructures of high volume blast furnace ferronickel slag cement mortar by wet grinding activation. Construction and Building Materials, 2022, 320, 126148.	3.2	16
6	Enhancement of compressive strength of high-volume fly ash cement paste by wet grinded cement: Towards low carbon cementitious materials. Construction and Building Materials, 2022, 323, 126458.	3.2	18
7	Improvement in flexural strength of Portland cement by lamellar structured montmorillonite. Construction and Building Materials, 2022, 329, 127208.	3.2	6
8	Nano C-S-H seeds prepared from ground granulated blast-furnace slag-carbide slag and its application in Portland cement. Construction and Building Materials, 2022, 329, 127204.	3.2	13
9	Research on the properties of wet-ground waste limestone powder as foam stabilizer in foamed concrete. Construction and Building Materials, 2022, 329, 127203.	3.2	17
10	Sustainable clinker-free solid waste binder produced from wet-ground granulated blast-furnace slag, phosphogypsum and carbide slag. Construction and Building Materials, 2022, 330, 127218.	3.2	67
11	Light-weight carbon fiber/silver-coated hollow glass spheres/epoxy composites as highly effective electromagnetic interference shielding material. Journal of Reinforced Plastics and Composites, 2022, 41, 497-508.	1.6	3
12	Compressive strength and permeability of steam-cured mortar incorporating high volume fly ash with different activation degrees by wet milling. Journal of Building Engineering, 2022, 56, 104767.	1.6	0
13	Hydration and Compressive Strength of Activated Blast-Furnace Slag–Steel Slag with Na2CO3. Materials, 2022, 15, 4375.	1.3	4
14	Improving the mechanical property and water resistance of β-hemihydrate phosphogypsum by incorporating ground blast-furnace slag and steel slag. Construction and Building Materials, 2022, 344, 128265.	3.2	11
15	The thermal performances of cement-based materials with different types of microencapsulated phase change materials. Construction and Building Materials, 2022, 345, 128388.	3.2	9
16	Effect of steam curing on compressive strength and microstructure of high volume ultrafine fly ash cement mortar. Construction and Building Materials, 2021, 266, 120894.	3.2	77
17	Effect of wet grinded lithium slag on compressive strength and hydration of sulphoaluminate cement system. Construction and Building Materials, 2021, 267, 120465.	3.2	66
18	Nano particles prepared from hardened cement paste by wet grinding and its utilization as an accelerator in Portland cement. Journal of Cleaner Production, 2021, 283, 124632.	4.6	29

#	Article	IF	Citations
19	Laboratory Evaluation for Utilization of Phosphogypsum through Carbide Slag Highly-Effective Activating Anhydrous Phosphogypsum. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 392-399.	0.4	6
20	Improving durability of heat-cured high volume fly ash cement mortar by wet-grinding activation. Construction and Building Materials, 2021, 289, 123157.	3.2	33
21	Effect of wet-grinding steel slag on the properties of Portland cement: An activated method and rheology analysis. Construction and Building Materials, 2021, 286, 122823.	3.2	61
22	An accelerator prepared from waste concrete recycled powder and its effect on hydration of cement-based materials. Construction and Building Materials, 2021, 296, 123767.	3.2	51
23	A comparative study on concrete slurry waste: performance optimization from the wet-milling process. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	7
24	The influence of wet ground fly ash on the performance of foamed concrete. Construction and Building Materials, 2021, 304, 124676.	3.2	25
25	Potential usage of porous autoclaved aerated concrete waste as eco-friendly internal curing agent for shrinkage compensation. Journal of Cleaner Production, 2021, 320, 128894.	4.6	15
26	Mechanical and microstructure development of portland cement modified with micro-encapsulated phase change materials. Construction and Building Materials, 2021, 304, 124652.	3.2	9
27	Green reaction-type nucleation seed accelerator prepared from coal fly ash ground in water environment. Construction and Building Materials, 2021, 306, 124840.	3.2	14
28	Heat-cured cement-based composites with wet-grinded fly ash and carbide slag slurry: Hydration, compressive strength and carbonation. Construction and Building Materials, 2021, 307, 124916.	3.2	12
29	Preparation of nano cement particles by wet-grinding and its effect on hydration of cementitious system. Construction and Building Materials, 2021, 307, 125051.	3.2	9
30	Eco-friendly UHPC prepared from high volume wet-grinded ultrafine GGBS slurry. Construction and Building Materials, 2021, 308, 125057.	3.2	60
31	Preparation of nano-kaolin by wet-grinding process and its application as accelerator in Portland cement. Journal of Building Engineering, 2021, 44, 103401.	1.6	1
32	New treatment technology: The use of wet-milling concrete slurry waste to substitute cement. Journal of Cleaner Production, 2020, 242, 118347.	4.6	67
33	Shrinkage properties and microstructure of high volume ultrafine phosphorous slag blended cement mortars with superabsorbent polymer. Journal of Building Engineering, 2020, 29, 101121.	1.6	17
34	Preparation for micro-lithium slag via wet grinding and its application as accelerator in Portland cement. Journal of Cleaner Production, 2020, 250, 119528.	4.6	107
35	Feasibility of incorporating autoclaved aerated concrete waste for cement replacement in sustainable building materials. Journal of Cleaner Production, 2020, 250, 119455.	4.6	112
36	Utilization of Carbide Slag by Wet Grinding as an Accelerator in Calcium Sulfoaluminate Cement. Materials, 2020, 13, 4526.	1.3	16

3

#	Article	IF	CITATIONS
37	Wet-milling disposal of autoclaved aerated concrete demolition waste – A comparison with classical supplementary cementitious materials. Advanced Powder Technology, 2020, 31, 3736-3746.	2.0	20
38	Nano-carbide slag seed as a new type accelerator for Portland cement. Materials Letters, 2020, 278, 128464.	1.3	16
39	Nano-treatment of Autoclaved Aerated Concrete Waste and Its Usage in Cleaner Building Materials. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 786-793.	0.4	8
40	Ultra-fine slag activated by sodium carbonate at ambient temperature. Construction and Building Materials, 2020, 264, 120695.	3.2	19
41	Utilization of carbide slag-granulated blast furnace slag system by wet grinding as low carbon cementitious materials. Construction and Building Materials, 2020, 249, 118763.	3.2	70
42	Effects of wet-grinded superfine waste glass on the fresh properties and reaction characteristic of cement pastes. Construction and Building Materials, 2020, 247, 118593.	3.2	22
43	Preparation of ultrafine fly ash by wet grinding and its utilization for immobilizing chloride ions in cement paste. Waste Management, 2020, 113, 456-468.	3.7	21
44	Microemulsion synthesis of anhydrous calcium sulfate nanowhiskers with calcium acetate solution and its surface structure stable and crystal phase evolution after modification. Journal of Nanoparticle Research, 2020, 22, 1 .	0.8	5
45	Mechanical Properties and Microscopic Mechanism of Coral Sand-Cement Mortar. Advances in Materials Science and Engineering, 2020, 2020, 1-11.	1.0	4
46	Fluid Permeability of Ground Steel Slag-Blended Composites Evaluated by Pore Structure. Advances in Materials Science and Engineering, 2020, 2020, 1-14.	1.0	0
47	Evaluation Method of Relative Humidity Changes in Below-Grade Concrete Structure Space Depending on Different Waterproofing Material and Installation Method. Materials, 2020, 13, 742.	1.3	0
48	Compressive strength and hydration process of ground granulated blast furnace slag-waste gypsum system managed by wet grinding. Construction and Building Materials, 2019, 228, 116777.	3.2	47
49	Micro-environment regulation synthesis of calcium sulfate nanoparticles and its water removal application. Materials Research Express, 2019, 6, 1050b8.	0.8	4
50	Eco-friendly treatment of low-calcium coal fly ash for high pozzolanic reactivity: A step towards waste utilization in sustainable building material. Journal of Cleaner Production, 2019, 238, 117962.	4.6	170
51	Segmented fractal pore structure covering nano- and micro-ranges in cementing composites produced with GGBS. Construction and Building Materials, 2019, 225, 1170-1182.	3.2	57
52	Compressive strength and hydration process of wet-grinded granulated blast-furnace slag activated by sodium sulfate and sodium carbonate. Cement and Concrete Composites, 2019, 97, 387-398.	4.6	125
53	Microemulsion Synthesis of Nanosized Calcium Sulfate Hemihydrate and Its Morphology Control by Different Surfactants. ACS Omega, 2019, 4, 9552-9556.	1.6	14
54	Compressive strength and hydration of high-volume wet-grinded coal fly ash cementitious materials. Construction and Building Materials, 2019, 206, 248-260.	3.2	62

#	Article	IF	Citations
55	Effect of organic alkali on compressive strength and hydration of wet-grinded granulated blast-furnace slag containing Portland cement. Construction and Building Materials, 2019, 206, 10-18.	3.2	21
56	Efficiency of wet-grinding on the mechano-chemical activation of granulated blast furnace slag (GBFS). Construction and Building Materials, 2019, 199, 185-193.	3.2	45
57	Effects of nano-SiO2 on early strength and microstructure of steam-cured high volume fly ash cement system. Construction and Building Materials, 2019, 194, 350-359.	3.2	173
58	Pore structure of affected zone around saturated and large superabsorbent polymers in cement paste. Cement and Concrete Composites, 2019, 97, 54-67.	4.6	91
59	Self-hydration characteristics of ground granulated blast-furnace slag (GGBFS) by wet-grinding treatment. Construction and Building Materials, 2018, 167, 96-105.	3.2	59
60	Effect of hydroxypropyl-methyl cellulose ether on rheology of cement paste plasticized by polycarboxylate superplasticizer. Construction and Building Materials, 2018, 160, 341-350.	3.2	105
61	Pore structure evaluation of cementing composites blended with coal by-products: Calcined coal gangue and coal fly ash. Fuel Processing Technology, 2018, 181, 75-90.	3.7	120
62	Effect of Steel Slag and Granulated Blast-furnace Slag on the Mechanical Strength and Pore Structure of Cement Composites. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 1186-1192.	0.4	5
63	Effect of triisopropanolamine on compressive strength and hydration of steaming-cured cement-fly ash paste. Construction and Building Materials, 2018, 192, 836-845.	3.2	46
64	The effect of ultrahigh volume ultrafine blast furnace slag on the properties of cement pastes. Construction and Building Materials, 2018, 189, 438-447.	3.2	37
65	Utilization of lithium slag by wet-grinding process to improve the early strength of sulphoaluminate cement paste. Journal of Cleaner Production, 2018, 205, 536-551.	4.6	182
66	Physico-chemical Characteristics of Wet-milled Ultrafine-granulated Phosphorus Slag as a Supplementary Cementitious Material. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 625-633.	0.4	34
67	Synthesis of \hat{l}_{\pm} -hemihydrate gypsum from cleaner phosphogypsum. Journal of Cleaner Production, 2018, 195, 396-405.	4.6	89
68	Effect of sodium gluconate on dispersion of polycarboxylate superplasticizer with different grafting density in side chain. Journal of Industrial and Engineering Chemistry, 2017, 55, 91-100.	2.9	120
69	Effect of silica fume on the thaumasite form of sulfate attack on cement-based materials. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 1108-1114.	0.4	6
70	Use of different barium salts to inhibit the thaumasite form of sulfate attack in cement-based materials. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 361-366.	0.4	5
71	Influence of annealing on the structure of silica glass. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 902-906.	0.4	3