
Laura Torrente-Murciano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6194278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tailoring the size of silver nanoparticles by controlling mixing in microreactors. Chemical Engineering Journal, 2022, 432, 134112.	6.6	18
2	Size Control in the Colloidal Synthesis of Plasmonic Magnesium Nanoparticles. Journal of Physical Chemistry C, 2022, 126, 563-577.	1.5	17
3	Importance of Monitoring the Synthesis of Lightâ€Interacting Nanoparticles – A Review on In Situ, Ex Situ, and Online Timeâ€Resolved Studies. Advanced Optical Materials, 2022, 10, .	3.6	4
4	Low Temperature and Pressure Single-Vessel Integrated Ammonia Synthesis and Separation using Commercial KATALCO Catalysts. Johnson Matthey Technology Review, 2022, 66, 435-442.	0.5	0
5	COx-free hydrogen production from ammonia – mimicking the activity of Ru catalysts with unsupported Co-Re alloys. Applied Catalysis B: Environmental, 2021, 280, 119405.	10.8	21
6	Synergistic Effect of Simultaneous Doping of Ceria Nanorods with Cu and Cr on CO Oxidation and NO Reduction. Chemistry - A European Journal, 2021, 27, 2165-2174.	1.7	10
7	Indirect Formic Acid Fuel Cell Based on a Palladium or Palladiumâ€Alloy Film Separating the Fuel Reaction and Electricity Generation. ChemElectroChem, 2021, 8, 378-385.	1.7	8
8	The potential of green ammonia for agricultural and economic development in Sierra Leone. One Earth, 2021, 4, 104-113.	3.6	20
9	Green, scalable, low cost and reproducible flow synthesis of biocompatible PEG-functionalized iron oxide nanoparticles. Reaction Chemistry and Engineering, 2021, 6, 1961-1973.	1.9	12
10	Exceeding Singleâ€Pass Equilibrium with Integrated Absorption Separation for Ammonia Synthesis Using Renewable Energy—Redefining the Haberâ€Bosch Loop. Advanced Energy Materials, 2021, 11, 2003845.	10.2	37
11	Dialâ€Aâ€Particle: Precise Manufacturing of Plasmonic Nanoparticles Based on Early Growth Information—Redefining Automation for Slow Material Synthesis. Advanced Energy Materials, 2021, 11, 2100918.	10.2	11
12	Rational design of the inlet configuration of flow systems for enhanced mixing. Journal of Flow Chemistry, 2021, 11, 589-598.	1.2	9
13	Guidance for targeted development of ammonia synthesis catalysts from a holistic process approach. Chem Catalysis, 2021, 1, 1163-1172.	2.9	10
14	Mechanistic insights of the reduction of gold salts in the Turkevich protocol. Nanoscale, 2020, 12, 2740-2751.	2.8	43
15	Continuous manufacturing of silver nanoparticles between 5 and 80 nm with rapid online optical size and shape evaluation. Reaction Chemistry and Engineering, 2020, 5, 342-355.	1.9	29
16	Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy and Environmental Science, 2020, 13, 331-344.	15.6	764
17	Hydrogen production from ammonia decomposition using Co/γ-Al2O3 catalysts – Insights into the effect of synthetic method. International Journal of Hydrogen Energy, 2020, 45, 27210-27220.	3.8	36
18	Fast Synthesis of CeO ₂ Nanoparticles in a Continuous Microreactor Using Deep Eutectic Reline As Solvent. ACS Sustainable Chemistry and Engineering, 2020, 8, 18297-18302.	3.2	17

#	Article	IF	CITATIONS
19	XAS investigation of silica aerogel supported cobalt rhenium catalysts for ammonia decomposition. Physical Chemistry Chemical Physics, 2020, 22, 18932-18949.	1.3	7
20	Indirect photo-electrochemical detection of carbohydrates with Pt@g-C3N4 immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane. Bioelectrochemistry, 2020, 134, 107499.	2.4	12
21	Morphological Control of Nanostructured V ₂ O ₅ by Deep Eutectic Solvents. ACS Applied Materials & Interfaces, 2020, 12, 18803-18812.	4.0	27
22	Recent progress on the manufacturing of nanoparticles in multi-phase and single-phase flow reactors. Current Opinion in Chemical Engineering, 2020, 29, 26-33.	3.8	24
23	Continuous synthesis of monodisperse iron@iron oxide core@shell nanoparticles. Chemical Engineering Journal, 2020, 396, 125299.	6.6	27
24	COx-free hydrogen production from ammonia on novel cobalt catalysts supported on 1D titanate nanotubes. International Journal of Hydrogen Energy, 2019, 44, 30062-30074.	3.8	38
25	A MOF-templated approach for designing ruthenium–cesium catalysts for hydrogen generation from ammonia. International Journal of Hydrogen Energy, 2019, 44, 30108-30118.	3.8	22
26	Oxidant free conversion of alcohols to nitriles over Ni-based catalysts. Catalysis Science and Technology, 2019, 9, 86-96.	2.1	38
27	Applications in catalysis, photochemistry, and photodetection: general discussion. Faraday Discussions, 2019, 214, 479-499.	1.6	5
28	Theory of hot electrons: general discussion. Faraday Discussions, 2019, 214, 245-281.	1.6	34
29	Dynamics of hot electron generation in metallic nanostructures: general discussion. Faraday Discussions, 2019, 214, 123-146.	1.6	21
30	N-Doped Fe@CNT for Combined RWGS/FT CO ₂ Hydrogenation. ACS Sustainable Chemistry and Engineering, 2019, 7, 7395-7402.	3.2	44
31	Size-activity relationship of iridium particles supported on silica for the total oxidation of volatile organic compounds (VOCs). Chemical Engineering Journal, 2019, 366, 100-111.	6.6	56
32	Ru-Based Catalysts for H2 Production from Ammonia: Effect of 1D Support. Topics in Catalysis, 2019, 62, 1169-1177.	1.3	47
33	Enhanced ceria nanoflakes using graphene oxide as a sacrificial template for CO oxidation and dry reforming of methane. Applied Catalysis B: Environmental, 2019, 242, 358-368.	10.8	50
34	Nanostructured faceted ceria as oxidation catalyst. Current Opinion in Chemical Engineering, 2018, 20, 99-106.	3.8	31
35	Zeolite Y supported nickel phosphide catalysts for the hydrodenitrogenation of quinoline as a proxy for crude bio-oils from hydrothermal liquefaction of microalgae. Dalton Transactions, 2018, 47, 1189-1201.	1.6	16
36	High Yield Manufacturing of γ-Al ₂ O ₃ Nanorods. ACS Sustainable Chemistry and Engineering, 2018, 6, 88-92.	3.2	18

#	Article	IF	CITATIONS
37	Continuous synthesis of hollow silver–palladium nanoparticles for catalytic applications. Faraday Discussions, 2018, 208, 427-441.	1.6	27
38	Continuous synthesis of tuneable sized silver nanoparticles <i>via</i> a tandem seed-mediated method in coiled flow inverter reactors. Reaction Chemistry and Engineering, 2018, 3, 267-276.	1.9	42
39	Continuous low temperature synthesis of MAPbX ₃ perovskite nanocrystals in a flow reactor. Reaction Chemistry and Engineering, 2018, 3, 640-644.	1.9	41
40	Mechanism of CO2 capture in nanostructured sodium amide encapsulated in porous silica. Surface and Coatings Technology, 2018, 350, 227-233.	2.2	7
41	Theory as a driving force to understand reactions on nanoparticles: general discussion. Faraday Discussions, 2018, 208, 147-185.	1.6	3
42	Control of catalytic nanoparticle synthesis: general discussion. Faraday Discussions, 2018, 208, 471-495.	1.6	3
43	Highlights from Faraday Discussion on Designing Nanoparticle Systems for Catalysis, London, UK, May 2018. Chemical Communications, 2018, 54, 9385-9393.	2.2	2
44	Ammonia decomposition over cobalt/carbon catalysts—Effect of carbon support and electron donating promoter on activity. Catalysis Today, 2017, 286, 131-140.	2.2	57
45	Synthesis of narrow sized silver nanoparticles in the absence of capping ligands in helical microreactors. Reaction Chemistry and Engineering, 2017, 2, 116-128.	1.9	60
46	Deep eutectic-solvothermal synthesis of nanostructured ceria. Nature Communications, 2017, 8, 14150.	5.8	122
47	γ-Al ₂ O ₃ nanorods with tuneable dimensions – a mechanistic understanding of their hydrothermal synthesis. RSC Advances, 2017, 7, 22369-22377.	1.7	30
48	Low temperature total oxidation of toluene by bimetallic Au–Ir catalysts. Catalysis Science and Technology, 2017, 7, 2886-2896.	2.1	39
49	Continuous Production of Cellulose Microbeads via Membrane Emulsification. ACS Sustainable Chemistry and Engineering, 2017, 5, 5931-5939.	3.2	57
50	Modification of Ammonia Decomposition Activity of Ruthenium Nanoparticles by N-Doping of CNT Supports. Topics in Catalysis, 2017, 60, 1251-1259.	1.3	36
51	The importance of particle-support interaction on particle size determination by gas chemisorption. Journal of Nanoparticle Research, 2016, 18, 87.	0.8	33
52	Biphasic Epoxidation Reaction in the Absence of Surfactants—Integration of Reaction and Separation Steps in Microtubular Reactors. ACS Sustainable Chemistry and Engineering, 2016, 4, 3245-3249.	3.2	8
53	H2 Production via Ammonia Decomposition Using Non-Noble Metal Catalysts: A Review. Topics in Catalysis, 2016, 59, 1438-1457.	1.3	252
54	Effect of support of Co-Na-Mo catalysts on the direct conversion of CO2 to hydrocarbons. Journal of CO2 Utilization, 2016, 16, 97-103.	3.3	65

#	Article	IF	CITATIONS
55	Effect of nanostructured ceria as support for the iron catalysed hydrogenation of CO ₂ into hydrocarbons. Physical Chemistry Chemical Physics, 2016, 18, 15496-15500.	1.3	48
56	The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Applied Catalysis B: Environmental, 2015, 174-175, 403-412.	10.8	333
57	Selective Oxidation of Salicylic Alcohol to Aldehyde with O ₂ /H ₂ using Auâ€Pd on Titanate Nanotubes Catalysts. ChemCatChem, 2015, 7, 925-927.	1.8	31
58	Single-step synthesis of nanostructured Î ³ -alumina with solvent reusability to maximise yield and morphological purity. Journal of Materials Chemistry A, 2015, 3, 6196-6201.	5.2	33
59	Mapping the Cu-BTC metal–organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chemical Engineering Journal, 2015, 281, 669-677.	6.6	248
60	Low temperature H2 production from ammonia using ruthenium-based catalysts: Synergetic effect of promoter and support. Applied Catalysis B: Environmental, 2015, 172-173, 129-135.	10.8	142
61	Effect of nanostructured support on the WGSR activity of Pt/CeO2 catalysts. Catalysis Communications, 2015, 71, 1-6.	1.6	34
62	Selective telomerisation of isoprene with methanol by a heterogeneous palladium resin catalyst. Catalysis Science and Technology, 2015, 5, 1206-1212.	2.1	10
63	In-situ synthesis of hydrogen peroxide in tandem with selective oxidation reactions: A mini-review. Catalysis Today, 2015, 248, 115-127.	2.2	95
64	Enhanced H2O2 production over Au-rich bimetallic Au–Pd nanoparticles on ordered mesoporous carbons. Catalysis Today, 2015, 248, 48-57.	2.2	40
65	Tandem isomerization/telomerization of long chain dienes. Frontiers in Chemistry, 2014, 2, 37.	1.8	3
66	Enhanced AuPd Activity in the Direct Synthesis of Hydrogen Peroxide using Nanostructured Titanate Nanotube Supports. ChemCatChem, 2014, 6, 2531-2534.	1.8	33
67	Insights into biphasic oxidations with hydrogen peroxide; towards scaling up. Green Chemistry, 2014, 16, 3281-3285.	4.6	17
68	Formation of hydrocarbons via CO2 hydrogenation – A thermodynamic study. Journal of CO2 Utilization, 2014, 6, 34-39.	3.3	71
69	In-situ H2 production via low temperature decomposition of ammonia: Insights into the roleÂof cesium as a promoter. International Journal of Hydrogen Energy, 2014, 39, 7646-7654.	3.8	97
70	Shape-dependency activity of nanostructured CeO2 in the total oxidation of polycyclic aromatic hydrocarbons. Applied Catalysis B: Environmental, 2013, 132-133, 116-122.	10.8	158
71	Identifying the largest environmental life cycle impacts during carbon nanotube synthesis via chemical vapour deposition. Journal of Cleaner Production, 2013, 42, 180-189.	4.6	48
72	Highly dispersed encapsulated AuPd nanoparticles on ordered mesoporous carbons for the direct synthesis of H2O2 from molecular oxygen and hydrogen. Chemical Communications, 2012, 48, 5316.	2.2	32

#	Article	IF	CITATIONS
73	Hollow fibre membrane reactors for high H2 yields in the WGS reaction. Journal of Membrane Science, 2012, 405-406, 30-37.	4.1	35
74	Study of individual reactions of the sour compression process for the purification of oxyfuel-derived CO2. International Journal of Greenhouse Gas Control, 2011, 5, S224-S230.	2.3	20
75	Sour compression process for the removal of SO and NO from oxyfuel-derived CO2. Energy Procedia, 2011, 4, 908-916.	1.8	36
76	Purification of oxyfuel-derived CO2. International Journal of Greenhouse Gas Control, 2010, 4, 137-142.	2.3	56
77	Synthesis of high aspect ratio titanate nanotubes. Journal of Materials Chemistry, 2010, 20, 6484.	6.7	74
78	Telomerisation of long-chain dienes with alcohols using Pd(IMes)(dvds) catalyst. Green Chemistry, 2010, 12, 866.	4.6	22
79	Purification of oxyfuel-derived CO2. Energy Procedia, 2009, 1, 399-406.	1.8	73
80	Highly selective Pd/titanate nanotube catalysts for the double-bond migration reaction. Journal of Catalysis, 2007, 245, 272-278.	3.1	65
81	Deposition of Pt, Pd, Ru and Au on the surfaces of titanate nanotubes. Topics in Catalysis, 2006, 39, 151-160.	1.3	131
82	Synthesis of novel composite materials via the deposition of precious metals onto protonated titanate (TiO2) nanotubes. Transactions of the Institute of Metal Finishing, 2006, 84, 293-299.	0.6	33