Susana Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6194213/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coping with Abiotic Stress in Plants—An Endomembrane Trafficking Perspective. Plants, 2022, 11, 338.	3.5	14
2	Abiotic Stress Triggers the Expression of Genes Involved in Protein Storage Vacuole and Exocyst-Mediated Routes. International Journal of Molecular Sciences, 2021, 22, 10644.	4.1	6
3	ER Mutations Affect the Localization of Plant-Specific Insert (PSI) B in Arabidopsis. , 2021, 11, .		0
4	Overexpression of Plant-Specific Insert from Cardosin B (PSI B) in Arabidopsis Correlates with Cell Responses to Stresses. , 2021, 11, .		1
5	Abiotic Stress Upregulates the Expression of Genes Involved in PSV and Autophagy Routes. Biology and Life Sciences Forum, 2020, 4, .	0.6	0
6	Dissecting Plant Specific Insert Interaction Networks. Biology and Life Sciences Forum, 2020, 4, .	0.6	0
7	N-Linked Glycosylation Modulates Golgi-Independent Vacuolar Sorting Mediated by the Plant Specific Insert. Plants, 2019, 8, 312.	3.5	13
8	Vacuolar Sorting Determinants: Isolation and Study. Methods in Molecular Biology, 2018, 1789, 21-31.	0.9	0
9	Plant Vacuolar Sorting: An Overview. Progress in Botany Fortschritte Der Botanik, 2016, , 67-94.	0.3	0
10	Zinc Accumulation and Tolerance in <i>Solanum nigrum</i> are Plant Growth Dependent. International Journal of Phytoremediation, 2015, 17, 272-279.	3.1	16
11	Delivering of Proteins to the Plant Vacuole—An Update. International Journal of Molecular Sciences, 2014, 15, 7611-7623.	4.1	36
12	Cardosin <scp>A</scp> contains two vacuolar sorting signals using different vacuolar routes in tobacco epidermal cells. Plant Journal, 2013, 76, 87-100.	5.7	37
13	Chlapsin, a chloroplastidial aspartic proteinase from the green algae Chlamydomonas reinhardtii. Planta, 2012, 236, 283-296.	3.2	8
14	The heterologous systems in the study of cardosin B trafficking pathways. Plant Signaling and Behavior, 2011, 6, 895-897.	2.4	7
15	Dissecting cardosin B trafficking pathways in heterologous systems. Planta, 2010, 232, 1517-1530.	3.2	21
16	Characterization of aspartic proteinases in C. cardunculus L. callus tissue for its prospective transformation. Plant Science, 2010, 178, 140-146.	3.6	20
17	PrimerIdent: A web based tool for conserved primer design. Bioinformation, 2010, 5, 52-54.	0.5	12
18	Cardosins in postembryonic development of cardoon: towards an elucidation of the biological function of plant aspartic proteinases. Protoplasma, 2008, 232, 203-213.	2.1	29

SUSANA PEREIRA

#	Article	IF	CITATIONS
19	High salinity and drought act on an organ-dependent manner on potato glutamine synthetase expression and accumulation. Environmental and Experimental Botany, 2007, 60, 121-126.	4.2	103
20	Structural characterization of the stigma-style complex of Cynara cardunculus (Asteraceae) and immunolocalization of cardosins A and B during floral development. Canadian Journal of Botany, 2006, 84, 737-749.	1.1	15
21	Specific roles of potato glutamine synthetase isoenzymes in callus tissue grown under salinity: molecular and biochemical responses. Plant Cell, Tissue and Organ Culture, 2006, 87, 1-7.	2.3	13
22	The embryo sac of Cynara cardunculus: ultrastructure of the development and localisation of the aspartic proteinase cardosin B. Sexual Plant Reproduction, 2006, 19, 93-101.	2.2	20
23	Isolation and characterisation of a cDNA encoding a novel cytosolic ascorbate peroxidase from potato plants (Solanum tuberosum L.). Acta Physiologiae Plantarum, 2006, 28, 41-47.	2.1	3
24	Glutamine synthetase of potato (Solanum tuberosum L. cv. Desiree) plants: cell- and organ-specific expression and differential developmental regulation reveal specific roles in nitrogen assimilation and mobilization. Journal of Experimental Botany, 2005, 56, 663-671.	4.8	39
25	Regulation of glutamine synthetase expression in sunflower cells exposed to salt and osmotic stress. Scientia Horticulturae, 2004, 103, 101-111.	3.6	28
26	Simple and fast in situ hybridization. Plant Molecular Biology Reporter, 2002, 20, 219-229.	1.8	6
27	Cardosin A, an abundant aspartic proteinase, accumulates in protein storage vacuoles in the stigmatic papillae of Cynara cardunculus L. Planta, 1997, 203, 204-212.	3.2	84
28	Detection of a Cytosolic Glutamine Synthetase in Leaves of Nicotiana tabacum L. by Immunocytochemical Methods. Plant Physiology, 1992, 100, 1591-1594.	4.8	89
29	Immunocytolocalization of glutamine synthetase in mesophyll and phloem of leaves ofSolanum tuberosum L Protoplasma, 1992, 167, 66-73.	2.1	55